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Abstract9

Individuals of different interacting populations often adjust to prevailing conditions by10

changing their behavior simultaneously, with consequences for trophic relationships through-11

out the system. While we now have a good theoretical understanding of how individuals12

adjust their behavior, the population dynamical consequences of co-adaptive behaviors are13

rarely described. Further, mechanistic descriptions of ecosystem functions are based on pop-14

ulation models that seldom take behavior into account. Here, we present a model that com-15

bines the population dynamics and adaptive behavior of organisms of two populations si-16

multaneously. We explore how the Nash equilibrium of a system – i.e. the optimal behavior17

of its constituent organisms – can shape population dynamics, and conversely how popu-18

lation dynamics impact the Nash equilibrium of the system. We illustrate this for the case19

of diel vertical migration (DVM), the daily movement of marine organisms between food-20

depleted but safe dark depths and more risky nutrition-rich surface waters. DVM represents21

the archetypal example of populations choosing between a foraging arena (the upper sunlit22

ocean) and a refuge (the dark depths). We show that population sizes at equilibrium are sig-23

nificantly different if organisms can adapt their behavior, and that optimal DVM behaviors24

within the community vary significantly if population dynamics are considered. As a conse-25

quence, ecosystem function estimates such as trophic transfer efficiency and vertical carbon26
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export differ greatly when fitness seeking behavior is included. Ignoring the role of behavior27

in multi-trophic population modeling can potentially lead to inaccurate predictions of popula-28

tion biomasses and ecosystem functions.29

Keywords— game theory | population dynamics | predator-prey interactions | trophic cascade | Diel Verti-30

cal Migration | ecosystem function31

1 Introduction32

A central challenge in mechanistic ecological modelling is to predict how the functioning of ecosystems33

will respond to global change (Steffen et al. 2018, Kiørboe et al. 2018). This requires a sound theoretical34

basis for not only how populations respond numerically to change, but also how they may adapt behav-35

iorally (Schmitz et al. 2008, Sih et al. 2011). In essence, this calls for ecosystem models to simultaneously36

capture processes that take place at very different time scales: notably the time scale at which individual37

organisms behave, the time scale at which populations interact with each other and fluctuate in abundance,38

and the evolutionary time scale at which traits or species emerge or go extinct (Křivan and Cressman 2009).39

It is well known that the processes at one time scale can have phenomenological effects at other time scales40

(Pelletier et al. 2009, Schoener 2011). However, modelling these time scales conjointly proves difficult, es-41

pecially if several interacting populations are involved, with the result that the implications of co-adaptive42

behavior on ecosystem function remains largely unexplored.43

For a single species, the link between behavioral and population time scales is fairly well established, usu-44

ally by allowing individuals to optimize a specific behavior (e.g. Lima 1985, Houston et al. 1993, Titelman45

and Fiksen 2004, Visser et al. 2012). Adaptive behavior can have various theoretical consequences such46

as reducing a food-chain length (Kondoh and Ninomiya 2009), promoting coexistence of prey (Křivan and47

Sikder 1999), altering the stability of a system (Abrams 2007, Křivan and Cressman 2009, Visser et al.48

2012) or changing the amplitude of population cycles (Křivan 2007). Multiple interacting populations in-49

creases complexity as different populations can evolve simultaneously or adapt their behavior in response50

to the reciprocal responses adopted by other populations to which they are trophically linked. This mutual51

inter-dependence of individual responses is usually solved by finding the Nash equilibrium of the system52

(Iwasa 1982, Hugie and Dill 1994, Bouskila 2001). While Nash equilibria are Evolutionary Stable Strategy53
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(ESS) in single-species systems, for multiple-species systems the Nash equilibrium may not satisfy ESS54

stability criteria (Křivan et al. 2008). Therefore, we only refer to Nash equilibria in the following. Evolu-55

tionary game theory assesses how the frequency of traits (or strategies) in a population evolves, but rarely56

quantifies the consequences for emerging population dynamics which generally only receives a qualitative57

mention (Brown et al. 1999, Bouskila 2001, Pinti and Visser 2019). We therefore need a theoretical frame-58

work that is able to scale from the behavior of individuals from multiple trophic levels to the dynamics of59

multiple populations and ecosystems. This is different than adaptive dynamics (Metz 2012), as adaptive60

dynamics considers that population dynamics are at steady state and resolves evolution, while we instead61

assume that behavioral strategies evolve slowly and resolve the population dynamics.62

Merging individual and population time scales (and to some extent evolutionary time scales) for a multi-63

species system leads to population game theory (Cressman et al. 2004). Specifically, at the fastest time64

scale, individuals behave adaptively to optimize their behavior in terms of Darwinian fitness. They do so65

in responses to both the abundance of conspecifics, predators and prey (density dependence) as well as66

the various strategies these players adopt (frequency dependence). The rationale here is that evolution has67

equipped individuals with rules that provide an optimal behavior in any given situation. Evolution shaped68

these optimal behaviors rather slowly, but individuals can react and adapt their behavior much faster than69

population evolves. The ensuing population dynamics then follow Lotka-Volterra dynamics. Most pop-70

ulation game theory studies have focused on a predator and one or two prey in a two-patch environment,71

where prey and/or predators can adapt their behaviors (Křivan and Sikder 1999, Křivan and Schmitz 2003,72

Cressman et al. 2004, Křivan 2007, Křivan and Cressman 2009, Cressman and Křivan 2010). How behav-73

ior and population dynamics interact in realistic systems where both multiple trophic levels and multiple74

behavioral strategies are possible remains unresolved. Perhaps more critical and less well understood, are75

the controls these interactions have on emergent ecosystem functions.76

In this work we explore how the Nash equilibrium of a system – i.e. the optimal behavior of its constituent77

organisms – can shape population dynamics, and conversely how population dynamics impact the Nash78

equilibrium of the system. We explore the systematic differences in ecosystem functions that are predicted79

by models depending on the aspects of behavior that are considered in the simulations. We illustrate the80

effect in a marine pelagic ecosystem, where Diel Vertical Migration (DVM) is a conspicuous behavior,81

played out across several trophic levels, that can be posited to have significant impact on key ecosystem82
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functions of trophic transfer efficiency and carbon sequestration in the deep ocean. Specifically, DVM is a83

feature of marine and aquatic ecosystems, where significant fractions of various populations feed in surface84

waters at night, and retreat to depth during daylight hours (Mehner and Kasprzak 2011, Klevjer et al. 2016,85

Ohman and Romagnan 2016). The proximate rationale is a trade-off between predation risk and feeding86

opportunity, from which optimal migration pattern can be estimated (Giske and Aksnes 1992, Rosland and87

Giske 1994, Titelman and Fiksen 2004). However, one migrating population has knock-on effects on other88

populations with each seeking its own optimal DVM strategy. Placing the trade-offs into a game theoretic89

context provides estimates of the DVM patterns employed by multiple players as they jockey for advantage90

(Iwasa 1982, Hugie and Dill 1994, Sainmont et al. 2015, Thygesen and Patterson 2018, Pinti and Visser91

2019, Pinti et al. 2019). The emerging inter-related behavioral network is characterised by a Nash equilib-92

rium where the behavior of each individual is optimized, and where the default of any one player reduces93

its fitness.94

We consider a tri-trophic food chain consisting of a phytoplankton resource, a zooplankton consumer and95

a visual predator, the last two playing against each other in a water column by adjusting their vertical posi-96

tion at day and at night. Using population game theory, we incorporate the plasticity of rational behaviors97

(i.e. each animal changes its migrating strategy to behave optimally at all times) in predator-prey dynamics,98

effectively reconciling the individual and population time scales for a game played out between two pop-99

ulations in multiple arenas. This allows us to compare population sizes with and without games, behavior100

of populations computed with or without population dynamics, and the resulting ecosystem function esti-101

mates. Our model is cast in terms of DVM between a zooplankton prey and a fish predator population, but102

we stress that given proper mechanistic descriptions, our method can be adapted to any multi-population103

multi-arena setting where all considered populations have varying behavior and population sizes.104

2 Methods105

We consider a tri-trophic chain (made of a resource (phytoplankton), a consumer (zooplankton), and a106

predator (fish)) and two time scales: the behavioral time scale, and the population time scale. We investi-107

gate three different models: model A considers only the behavioral time scale, model B considers only the108

population time scale, and model C considers both the behavioral and the population time scale.109
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The organisms reside in a water column divided into M water layers. For models A and C, days are divided110

into two periods: daylight hours (a fraction σ of the time) and night (1 − σ of the time). Phytoplankton111

cannot perform diel vertical migration, whereas zooplankton and visual predators can adapt their position112

at day and at night (DVM strategy) to maximise their fitness.113

Model A derives the optimal behavior of zooplankton and fish by computing the Nash equilibrium of the114

system following Pinti and Visser (2019), with the exception that phytoplankton are an explicit resource115

grazed upon by zooplankton.116

Model B is a simple 1D water column model of the population dynamics. In this model, we allow phyto-117

plankton, zooplankton and fish to grow according to Lotka-Volterra equations. We do not consider popula-118

tion exchanges or diffusion between the different water layers, and phytoplankton grow following a chemo-119

stat. Their carrying capacity as well as their instantaneous growth rate are depth-dependent, to mimic the120

effects of light in the water column.121

Model C combines models A and B: on a fast time scale, zooplankton and fish change their behavior as to122

always behave following their Nash equilibrium. On a slower time scale, population sizes vary similarly to123

model B, following Lotka-Volterra dynamics.124

2.1 Model A125

Model A refers to the model where organisms have an adaptive behavior, but where population sizes are126

fixed, similar to most game theoretic studies. Here, we fixed the consumer concentration to N = 100m−3
127

and the predator concentration to P = 1m−3. All parameters used are summarized in table 1. Most of the128

following equations are taken from Pinti and Visser (2019), and tailored to fit with our explicit description129

of the phytoplankton resources. For simplicity and readability, we drop the time dependencies of all vari-130

ables, and i and j can either refer to a specific water bin (when used as an index) or to its corresponding131

depth (when used as a function variable).132

We define the strategy matrices n = nij and p = pij as the frequency of the prey and predator population133

respectively, that follows strategy ij, i.e. being in layer j during day and i during night. By definition, we134

have:135
M∑
i=1

M∑
j=1

nij =
M∑
i=1

M∑
j=1

pij = 1, (1)
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with M the number of layers in the water column. If N and P are the mean concentration of prey and136

predators in the water column (in m−3), the prey concentration in layer j during daytime is:137

Nj,day = MN

M∑
i=1

nij , (2)

with similar expressions for predator and for nighttime concentrations. The clearance rate (i.e. the volume138

swept per unit of time when foraging) g of prey is constant as zooplankton are non-visual consumers, but139

the clearance rate b of visual predators varies with light levels, and thus with depth:140

b(day, z) =
Lmax exp(−κz)

L0 + Lmax exp(−κz)
,

b(night, z) =
ρLmax exp(−kz)

L0 + ρLmax exp(−κz),

(3)

with Lmax the daytime irradiance at the surface, κ the light attenuation coefficient of water, L0 the half-141

saturation light intensity and ρ the attenuation coefficient between day and night. z represents depth, with142

z = 0 the surface and z = zmax the maximum depth of the water column.143

Fitness is defined as the difference between specific growth and potential mortality over a 24h cycle. The144

day-averaged growth rate of plankton is the integral of its growth rate, so the sum of its growth rate during145

daytime and during nighttime. For prey, growth is equal to:146

GN
ij = εN

Mϕ

MN
g [σϕ(j) + (1− σ)ϕ(i)]− C(i, j), (4)

with ϕ the resource concentration (varying with depth but not time in this model), C(i, j) the migration147

cost between layer i and j, taken equal to 2cΔz|i − j|, Δz the width of a bin and c the cost to migrate 1 m,148

εN the assimilation efficiency of zooplankton and
Mϕ

MN
the weight ratio of phytoplankton and zooplankton149

organisms. For such strategy ij, the corresponding mortality risk is:150

DN
ij = MP

[
(1− σ)b(night, i)

M∑
k=1

pik + σb(day, j)
M∑
k=1

pkj

]
− μ, (5)

with μ a background mortality rate. The mortality risk for prey is conversely a component of the predator’s151

growth rate. For strategy ij, if we call η the conversion efficiency between prey and predator, the predator152
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growth rate is then:153

GP
ij = ηMN

[
σb(day, j)

M∑
k=1

nkj + (1− σ)b(night, i)

M∑
k=1

nik

]
− C(i, j). (6)

The density-dependent mortality rate of predators reflects reduced fitness at high abundances to mimic pos-154

sible interference with each other and attraction of top predators at high concentration (Hixon and Carr155

1997, Pinti and Visser 2019), and is as follow:156

DP
ij = μ0MP

[
σ

M∑
k=1

pkj + (1− σ)
M∑
k=1

pik

]
. (7)

The fitness of prey is then FN
ij = GN

ij − DN
ij , with a similar expression for the predator fitness FP . The157

Nash equilibrium of the system is found using the replicator equation (Schuster and Siegmund 1983, Hof-158

bauer and Sigmund 2003). In short, each strategy is allowed to grow proportionally to its fitness, before159

renormalization of the strategy matrices to ensure that condition 1 is satisfied.160

⎧⎪⎨
⎪⎩

n′
ij(τ +Δτ) = nij(τ) · (1 + ΔτFN

ij (τ)),

p′ij(τ +Δτ) = pij(τ) · (1 + ΔτFP
ij (τ)).

(8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nij(τ +Δτ) =

n′
ij(τ +Δτ)∑

k

∑
l n

′
kl(τ +Δτ)

,

pij(τ +Δτ) =
p′ij(τ +Δτ)∑

k

∑
l p

′
kl(τ +Δτ)

.

Δτ is a factor selected to keep the increase or decrease of strategy frequencies within reasonable limits at161

each iteration. It is chosen at each iteration according to:162

Δτ =
λ

max(|FN |, |FP |) . (9)

As a practical compromise, we chose λ = 0.1. For all simulations, equilibria were reached before 2 · 106163

time steps. In general, the replicator equation can lead to several Nash equilibrium depending on initial164

conditions. We tested for this by using different initial conditions. This never led to different Nash equilib-165

ria, and the results presented here are independent of the initial conditions.166

Model A has polymorphic-monomorphic equivalency (Broom and Rychtář 2014), meaning that the matri-167
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ces n and p indicate the frequency distribution of strategies but not how these distributions arise: organ-168

isms could play a pure strategy (polymorphic population), or they could all play the same mixed strat-169

egy (monomorphic population), or any combination in between these two configurations – as long as the170

population-level strategy is equal to n and p. The proof of this equivalency provided by Pinti and Visser171

(2019) is valid in our case, as their model is similar to this one.172

2.2 Model B173

Model B refers to a simple 1D tri-trophic model, considering population dynamics but not the behavior174

of the different organisms. This model does not include light cycle nor organism migrations, so that the175

dynamics in all layers are essentially independent. The differential equations governing phytoplankton,176

zooplankton and fish dynamics are:177

∂ϕ

∂t
= r(z)

(
1− ϕ(z, t)

K(z)

)
ϕ(z, t)− Mϕ

MN
gN(z, t)ϕ(z, t),

∂N

∂t
= εN

Mϕ

MN
gN(z, t)ϕ(z, t)−m0(z)N(z, t)P (z, t)− μN(z, t),

∂P

∂t
= εPm0(z)N(z, t)P (z, t)− μ0P (z, t)2 − μ1P (z, t),

(10)

where r is the depth-dependent growth rate of phytoplankton, K its depth-dependent carrying capacity, g178

the clearance rate of zooplankton and m0 the clearance rate of fish defined as bmax exp(−κz). The quadratic179

mortality term for fish −μ0P (z, t)2 tends to stabilize oscillatory behaviors (Steele and Henderson 1992).180

To mimic the growth description of zooplankton in Pinti and Visser (2019), the carrying capacity of phyto-181

plankton is set as:182

K(z) =
K0

2

(
1− tanh

(
z − z0
zs

))
, (11)

with K0 the surface carrying capacity, z0 the depth of the mixed layer and zs the thickness of the transition183

zone to a depleted layer. The growth rate r(z) of phytoplankton depends on light:184

r(z) = r0 exp(−κz), (12)

with r0 the surface growth rate.185

The equilibrium distributions can then be derived analytically, and are at each level (if we omit for readabil-186
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ity the dependencies on time and depth)187

N =
rμ0

(
εN

Mϕ

MN
gK − μ+m0μ1/μ0

)
εPm2

0r + εN
M2

ϕ

M2
N
g2Kμ0

,

P =
εPm0N − μ1

μ0
,

ϕ =
m0P + μ

εN
Mϕ

MN
g

(13)

if all populations co-exist,188

ϕ =
μ

εN
Mϕ

MN
g
,

N =
r(1− ϕ/K)

Mϕ

MN
g

(14)

if only phytoplankton and zooplankton are present, and189

ϕ = K (15)

if only phytoplankton is present in the system.190

In the particular case of an enrichment setting where the carrying capacity K of phytoplankton increases,191

the system consecutively admits only phytoplankton, phytoplankton and zooplankton, and all three species.192

The transition from one regime to the next can be derived analytically. Zooplankton appear at:193

K1 =
μ

εN
Mϕ

MN
g
, (16)

and visual predators at:194

K2 =
εPμrm0

εN
Mϕ

MN
g
[
εPm0r − μ1

Mϕ

MN
g
] . (17)

The consecutive appearance of the three regimes depends on the set of parameters chosen, and happens195

only if 0 < K1 < K2. With our set of parameters, we have K1 = 30 and K2 = 30.001, making the second196

regime indistinguishable in the figures.197
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2.3 Model C198

Model C combines models A and B to consider both behavior and population dynamics. In essence, we199

start by computing the Nash equilibrium in the strategy space as in model A, before updating the popula-200

tion sizes as in model B. At the behavioral time scale, we assume that processes are going much faster than201

at the population time scale, so the system should always be at equilibrium before any change at the pop-202

ulation time scale takes place. The clearance rate of zooplankton on prey (i.e. the volume of water swept203

by a foraging zooplankton per unit of time) is chosen such that the corresponding zooplankton growth rate204

when the resource is at its carrying capacity K0 is equal to the growth rate of zooplankton at the surface205

in Pinti and Visser (2019). Zooplankton also suffer a low background mortality rate, to ensure that the206

absence of food drives them to extinction even without predation. The details of the game dynamics and207

the fitness definition are similar to model A. We call FN (resp. FP ) the prey (resp. predator) fitness at the208

Nash equilibrium. We can define one such value for all organisms as, by definition of the Nash equilibrium,209

all organisms from the same population have the same fitness. Since phytoplankton have no behavior, their210

fitness is of no interest other than in population dynamics.211

At the population time scale, populations can grow and decay. Phytoplankton cannot change position, but212

as they are grazed upon by zooplankton their population sizes can also change. For simplicity, we ignore213

physical mixing between the different layers, and the concentration of phytoplankton in each layer is inde-214

pendent from the other layers and follows a chemostat. The population sizes are updated following func-215

tional responses type I:216

∂

∂t
ϕ(z, t) = ϕ(z, t)

(
r(z)

(
1− ϕ(z, t)

K(z)

)
− σ

Mϕ

MN
gNday(z)− (1− σ)

Mϕ

MN
gNnight(z)

)
d

dt
N(t) = N(t)FN

d

dt
P (t) = P (t)FP ,

(18)

with r and K defined as in model B. Thereafter, the behavioral and population dynamic processes are217

looped until steady state is reached, for both population sizes and migration strategies.218
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Table 1: Glossary of parameters.

Parameter Description Value Unit

t Time - day

z Depth - m

M Number of water layers 30 -

Δz Thickness of depth bins 10 m

zmax Total depth of the water column M ·Δz = 300 m

σ Fraction of daylight hours per day 0.65 -

Nday/night(z, t) Concentration of prey during day (night) at depth z eq. 2 m−3

Pday/night(z, t) Concentration of predator during day (night) at depth z eq. 2 m−3

ϕ(z, t) Concentration of resources at depth z eq. 18 m−3

N(t) Mean prey concentration in the water column eq. 18 m−3

P (t) Mean predator concentration in the water column eq. 18 m−3

ϕ,N, P Equilibrium concentrations eq. 13, 14, 15 m−3

K(z) Carrying capacity for phytoplankton eq. 11 m−3

K0 Surface carrying capacity for phytoplankton 104 m−3

z0 Mixed layer depth 50 m

zs Sharpness of the transition zone 10 m

r(z) Growth rate of phytoplankton eq. 12 day−1

κ Light attenuation coefficient of water 0.07 m−1

r0 Maximum growth rate of phytoplankton 1 day−1

FN (t) Fitness of the prey population at time t - day−1

FP (t) Fitness of the predator population at time t - day−1

FN
ij (t) Fitness of prey following strategy ij at time t - day−1

FP
ij (t) Fitness of predator following strategy ij at time t - day−1

g Clearance rate of zooplankton 10−1 m3day−1

Mϕ

MN
Weight ratio between phytoplankton and zooplankton 0.01 -

δt Time step 0.01 day
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Table 1 – continued from previous page

Parameter Description Value Unit

n = nij , p = pij Frequency matrix of prey (predator) strategies - -

τ,Δτ Time and time steps of the replicator dynamics - -

λ Factor for the increase rate of the replicator equation 0.1 -

b Predator clearance rate eq. 3 m3day−1

Lmax Surface irradiance during daytime 100 W m−2

L0 Half-saturation light intensity for visual predators 1 W m−2

ρ Fractional difference between day and night light levels 10−3 -

GN
ij , G

P
ij Growth rate of prey (predators) eq. 4 and 6 day−1

DN
ij , D

P
ij Mortality rate of prey (predators) eq. 5 and 7 day−1

C(i, j) Migration cost for strategy ij 2cΔz|i− j| day−1

c Cost to migrate 1m 10−5 m−1day−1

μ Background mortality rate of prey 0.01 day−1

μ0 Density-dependent mortality rate of predators 10−3 m3day−1

μ1 Mortality rate of predators 10−3 day−1

εN Zooplankton assimilation efficiency 1/3 -

εP Fish assimilation efficiency 1/3 -

η Predator growth efficiency 10−2 -

m0 Clearance rate of fish for zooplankton bmax exp(−κz) m3day−1

bmax Clearance rate of fish at the surface - m3day−1

TTE Trophic transfer efficiency eq. S1 -

CX
exp Active carbon export mediated by X eq. S2 gC m−2day−1

Xmigr Fraction of DVM migrants between the epipelagic eq. S3 -

and the depths

εD Fraction of ingested food egested 1/3 -

τD Fraction of food ingested at the surface egested at depth 1/2 -

mc,ϕ Carbon weight of a resource 10−8 gC

mc,N Carbon weight of a consumer 10−5 gC

12



Table 1 – continued from previous page

Parameter Description Value Unit

IX(z, t) Ingestion rate of an individual X - day−1

2.4 Simulations219

We recreate an enrichment experiment Oksanen et al. (1981), where we increase the resource carrying ca-220

pacity. This simulation recreates a wide variety of environmental conditions, from oligotrophic to more221

productive regions. We explore the response of the three models in terms of individual behaviors, popula-222

tion dynamics and ecosystem functions (carbon export and trophic transfer efficiency). In addition, we also223

discuss the behavior of the models when varying the predator clearance rate, to understand the counter-224

intuitive patterns observed by Pinti and Visser (2019) at high clearance rates in a setting similar to model225

A.226

Definitions of the ecosystem functions used in the models are given in SI1.227

The MATLAB code necessary to run these models is available on the following repository: https://228

gitlab.gbar.dtu.dk/jppi/Frequency-dependent_behavior_of_interacting_229

populations_significantly_impacts_ecosystem_function.230

3 Results231

We compare three models: adaptive behavior with fixed population sizes (model A), population dynamics232

with fixed behavior (model B), and both behavior and population dynamics (model C). We explore the in-233

fluence of the phytoplankton carrying capacity on the system. These three models are compared in terms of234

two predicted ecosystem functions: trophic transfer efficiency and active carbon export flux.235

3.1 Games with and without population dynamics236

With fixed population sizes (model A), three migration regimes emerge (figure 1 a-b and figure S1 a-b-c-237

d). At low resource carrying capacity, prey remain at depth at all times and predator are scattered through238

the water column (figure S1 b-d). At intermediate values of the two parameters, prey exhibit DVM patterns239
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and predators are scattered throughout the water column. Finally, at high resource carrying capacity, fish240

and zooplankton reside close to the surface with a high spatial overlap (figure 1 b). These results are de-241

pendent on the choice of population sizes. For example, a much higher predator population would create a242

higher pressure on prey that may consequently remain at depths for a much wider range of carrying capac-243

ities. The fixed population values (N = 100 m−3 and P = 1 m−3) were chosen as to be in the range of244

population variations in model C.245

The vertical distribution in model C allows only two regimes (figure 2). Counter to a model with fixed pop-246

ulation sizes (model A, Pinti and Visser 2019), there is no complete depth residency, as organisms go ex-247

tinct without feeding. In addition, population dynamics drives the emergence of prey DVM across most of248

their existence range (figure 2 and figure S1 a-c). Predators, in contrast, are scattered throughout the water249

column during the day and gather only during nighttime at the surface (figure 2 and figure S1 b-d). The fact250

that predators are scattered in the water column even where prey are absent (figure 2) is a consequence of251

the game theoretical approach. Predators all have the same fitness, whether they are scattered in the water252

column or at depth where prey are present during the day. Potential feeding benefits during daytime are too253

low compared to the density-dependent mortality that a gathering at depth would incur, hence organisms254

spread in the water column during daytime and focus on eating during nighttime at the surface, where their255

clearance rate is higher.256

3.2 Population dynamics with and without games257

Population sizes at equilibrium are considerably different when adaptive behavior is included or not (model258

B and C, figure 1 c-d-e). An adaptive behavior (model C) allows a wider range of coexistence for all three259

populations. Varying the phytoplankton carrying capacity (figure 1) exhibits an enrichment ladder, where260

successively higher trophic levels are admitted as productivity surpasses certain levels (Oksanen et al.261

1981). Adaptive behaviors reduce the productivity levels necessary for the emergence of consumers and262

predators. The equilibrium population sizes at high carrying capacity are also different when considering263

adaptive behaviors: the resource biomass does not grow exponentially but saturates, causing the saturation264

of the zooplankton and fish biomass as well.265
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Figure 1: (a) Day mean prey position, (b) Spatial overlap between predator and prey, (c) phyto-

plankton concentration in the mixed layer, (d) mean zooplankton concentration in the water col-

umn, (e) mean fish concentration, (f) trophic transfer efficiency and (g) active carbon export as a

function of the phytoplankton carrying capacity. Yellow dotted lines for the model with only be-

havior (model A), red dashed lines for the model with no behavior considerations (model B) and

plain purple lines are for the model where both behavior and population dynamics are considered

(model C). For model A, population sizes are fixed at N = 100 m−3 and P = 1 m−3.
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model C. Top panels: predation pressure is very low (beginning of the existence range of preda-

tors). Bottom panels: after log10(K0) = 1.5, predation pressure is higher and prey perform DVM.

3.3 Trophic transfer efficiency266

The trophic transfer efficiency (TTE) is very low when predator start to emerge (figure 1 f), but when con-267

sidering behavior the TTE increases at first, falls down (when prey start to perform DVM, see figure 1 a)268

and then increases again as the the population sizes increase, to saturate around 0.22. The TTE of model B269

increases much slower, as the predator population needs a higher resource carrying capacity to establish.270

But the TTE saturates around 0.3, higher than for model C. This is because all energy is transferred to the271

higher trophic level (except for a small background mortality term), as zooplankton cannot defend them-272

selves against predation by migrating deeper during daytime.273

3.4 Carbon Export274

As for TTE, the different models yield very different active carbon export estimates. Except when the275

predator starts to emerge, the active carbon export in model C (with population dynamics, figure 1 g) is276

higher than in model A (no population dynamics), because predators are more abundant (figure 1 e) and277

16



because a more important fraction of the population performs DVM (figure S1).278

At low phytoplankton carrying capacity (and high carrying capacity for the model A without population279

dynamics), the active export is null, either because the populations went extinct, or because they do not280

migrate and remain at depth or at the surface at all times.281

4 Discussion282

Our method successfully couples the effects of the behavioral and the population time scales on two popu-283

lations. By considering the individual and population time scales, our model unravels effects at both time284

scales simultaneously. The results when considering both time scales are different than when a single time285

scale is considered, whether it be the individual or the population time scale. Crucially, our simulations286

demonstrate that an adaptive behavior alters ecosystem functions, something already proven experimentally287

in grassland meadows (Ovadia and Schmitz 2002). The trophic transfer efficiency (TTE) is lowered when288

adaptive behavior is considered, especially at high resource carrying capacity. This is because zooplank-289

ton mortality risk directly depends on the behavior adopted. The general top-down control of consumers,290

especially in productive areas (Hairston et al. 1960, Oksanen et al. 1981) seem to indicate that TTE would291

typically be reduced when consumer adopt an adaptive behavior as the incurred energy cost is lost for the292

next trophic level.293

More generally, behavior can affect multiple ecosystem functions (trophic transfer, nutrient cycling and294

carbon export), and a failure to identify and consider possible adaptive behaviors may lead to severely bi-295

ased estimates. Population games are an efficient way to couple behavior and population dynamics, and the296

method can be used to compute meticulously emergent ecosystem functions.297

We framed our study as a game played out between predator and prey in a diel vertical migration context,298

but we stress that provided with adequate description of the population interactions our method can be299

tailored to reproduce other systems where the behavior and population dynamics of several populations300

are worth considering simultaneously – such as the adaptive behavior and trophic cascades in pond in-301

vertebrates (Start 2020), the succession of color morphs in a lizard species (Sinervo and Lively 1996), or302

the competition between owls and snakes preying on rodents (Bouskila 2001). More generally, previous303

studies pointed the importance of considering risk consequences in predator prey interactions (Lima and304
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Bednekoff 1999, Lima 2002), and a more systematic inclusion of behavior in population dynamics and305

ecosystem functions studies would probably be beneficial to the mechanistic understanding of the systems306

in focus.307

It is not straightforward to anticipate what happens at a time scale different from the ones resolved by the308

model, e.g. what behavior would emerge in the population from models without behavior implemented, or309

what happens at the population level from static games. A high or low fitness does not necessarily mean310

that a population will grow or go extinct, as behaviors can change and individuals can adapt to new con-311

straints through density and frequency dependent effects with repercussions for the fitness of all other play-312

ers in the system. For example, considering the behavior of individuals from a single population can have313

a range of consequences, such as relaxing the predation pressure on some species (Holt and Lawton 1994)314

or stabilizing the food-web structure (Kondoh and Ninomiya 2009). Non-consumptive effects of predation315

can also lead to physiological changes such as modified assimilation efficiency (Trussell et al. 2006, Thaler316

et al. 2012). In addition, a more realistic description of ecosystem processes would consider real time dy-317

namics. Our study only considered population dynamics when the equilibrium was reached, but population318

sizes vary with seasonal cycles in nature. Implementing this game to describe real time dynamics requires319

considering these natural variations, but also reproductive output as well as life history strategies of the320

considered organisms.321

Moreover, the evolutionary time scale (not explicitly considered in this work), would also be relevant for322

the system (Mitchell 2000), especially as predators can have important evolutionary roles in shaping up323

ecosystems despite having a marginal ecological importance (Brown and Vincent 1992). If we consider324

the evolution of the predator clearance rate as a trait (for example, through improved eye performances or325

increased swimming speed), because of frequency-dependent effects, the predator surprisingly does worse326

as it becomes more efficient – in the dynamic models (B and C) the population size decreases (figures S3327

and S4). For an individual, it would always be beneficial to increase clearance rate providing a competitive328

edge over conspecifics, and as such, all individuals should evolve following red queen dynamics toward329

better performances (Dieckmann et al. 1995). In this light, the population will then drive itself to extinc-330

tion, being, ”too accomplished for their own good” (Pinti and Visser 2019). However, there are always331

constraints (Rosenzweig et al. 1987), and there is invariably some trade-off to balance (Stearns 1989). An332

increased eye capacity or swimming ability would, for example, come at the cost of an increased metabolic333
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rate for predatory fish. As a consequence, there may be an optimum trait value for the clearance rate, which334

would ultimately control the state of our system.335

There is also the real possibility that this trait optimization could lead to speciation. Conceivably, differ-336

ent subgroups of a polymorphic population (i.e. a population where different individuals can have different337

strategies) may diverge. In our illustrative example, for instance, polymorphism could lead to the emer-338

gence of two predator types, such as high light - low light specialists. Such considerations would provide339

insight into the types of traits and behavioral strategies expressed in a given community, with cascading340

consequences for biodiversity and ecosystem function estimates.341

5 Conclusion342

In addition to the abundance and diversity of its constituent species, the functioning of an ecosystem also343

depends on how its indigenous organisms behave. Particularly with regards to trophic interactions, behav-344

ioral strategies form an inter-connected network, predicated by game-theory and honed by evolution – the345

etho-web – where a small change in conditions can trigger a restructuring of behavioral strategies across346

large sectors of the ecosystem, precipitating a significant change in ecosystem function. We have demon-347

strated this for the pelagic ecosystem where daily cycles of risk and opportunity drive a rich mosaic of pop-348

ulations and behavioral strategies, and where predicted ecosystem functions show significant density and349

frequency dependence. For the case of the pelagic ocean, these dependencies impact directly on two of the350

most important ecosystem services of the global ocean, namely fisheries production and carbon sequestra-351

tion. How such abundance-frequency dependencies play out in other ecosystems remains an open question,352

but we contend that trophic relationships almost invariably have co-evolved with behavioral strategies that353

mitigate risk and maximize opportunity for all individuals in their concurrent roles as competitors, preda-354

tors and prey.355
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V. Křivan and O. J. Schmitz. Adaptive foraging and flexible food web topology. Evolutionary Ecology408

Research, 5(5):623–652, 2003.409
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