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Abstract 17 

Many organisms perform regular migrations over long distances. These movements are often related to 18 

feeding and reproductive periods, and regulated by oceanographic conditions as well as physiological and 19 

behavioural traits. Different individual traits and their associated evolutionary constraints will ultimately 20 

shape the migratory strategy (and route) of individuals. Optimality theory can provide a framework to 21 

assess these inherent trade-offs in individual migrations and identify optimal migration routes in different 22 

conditions. Here, we present a model that describes the behavioural trade-off between migration time 23 

and energy expenditure and identifies optimal migration routes in realistic ocean conditions. The model 24 

explicitly includes a behavioural factor for individual risk management, including risks associated with 25 
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moving in a stochastic environment. We test this model in three different case studies, one in an idealized 26 

theoretical context and two in realistic conditions for sea turtle migrations. We show that behavioural 27 

traits can largely influence the optimal routes in long-distance migrations, resulting in major changes in 28 

migratory pathways. Further, we assess the ability of the model to infer back behavioural traits given a set 29 

of synthetic individual tracks and show relatively good performances. However, further tests are needed 30 

to evaluate performances when accurate observations of migrations are used.  31 

1. Introduction 32 

Migrations are common phenomena in terrestrial and aquatic ecosystems typically associated to the most 33 

important tasks in the organisms’ life history: feeding, survival and reproduction (Dingle 2014). In some 34 

groups of birds, marine mammals and fish, these migrations can span thousands of kilometres literally 35 

covering the entire planet (Alerstam et al. 2003; Block et al. 2011). Despite the strong selective pressures 36 

on migrations, diverse strategies can coexist even within population of the same species including partial 37 

migration, different time of departures, distinctive destinations, number of stopovers, moving speed, etc. 38 

(Alerstam 2001; Byron and Burke 2014). The existence of these widely variable migration strategies has 39 

generated questions regarding the adaptive value of migrations and the relative importance of ecological 40 

and evolutionary processes in shaping them (Alerstam et al. 2003; Cardona et al. 2017; Dalleau et al. 2019).  41 

The details of migration patterns have been studied for a range of marine species (see e.g. Nichols et al. 42 

2000; Bonfil et al. 2005; Aarestrup et al. 2009; Block et al. 2011), and several mechanisms have been 43 

suggested for both proximate and ultimate causes driving such processes. Genetic, physiological and 44 

behavioural adaptations are considered key attributes for the evolution of migrations (Alerstam et al. 2003; 45 

Dingle 2014; Lennox et al. 2016). Generally, migrants undergo these long journeys to find more favourable 46 

conditions such as better food, reduced predator pressure, better environmental conditions (Alerstam et 47 

al. 2003; Shaffer et al. 2006; Block et al. 2011).  The knowledge of migration routes can be innate, learnt 48 

through natal homing or taught by other individuals. (Fagan et al. 2013; Mueller et al. 2013; Scott et al. 49 

2014). Specific physiological adaptations have been identified in long distance migrants which can expose 50 

them to potential vulnerabilities under environmental disturbances including climate change (Feder et al. 51 

2010; Lennox et al. 2016). On the other hand, plasticity in behavioural traits can directly affect migration 52 

routes adapting them to changing food availability, temperature and ocean currents (Jørgensen et al. 2006; 53 

Block et al. 2011; Hays et al. 2014b) . 54 
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In particular, advection by ocean currents can have a large impact on the realized migration routes 55 

(Thomson et al. 1992; Luschi et al. 2003; Metcalfe et al. 2006; Hays et al. 2014a). The impact can be either 56 

negative in case of counter-current or lateral drift, or positive when favourable ocean currents allow 57 

reaching the destination faster and/or with less energy. While it is well known that migrating birds can 58 

adjust their speed in response to local wind conditions (i.e., increasing it in headwinds and reduce it in 59 

tailwinds (Bloch and Bruderer 1982)), mechanisms for navigation and active control of speed and heading 60 

in marine organisms are less clear (Hays et al. 2003; Åkesson and Hedenström 2007). 61 

Optimality methods can be used for the analyses of behavioural strategies and adaptations in the long-62 

distance migrations of several species (Hedenström 2003; Alerstam 2011) but presently few applications 63 

can be found for marine organisms (but see Hays et al. 2014a). An optimality approach may assist in 64 

providing reference solutions to compare against observed migrations tracks and to infer whether specific 65 

individual behaviour is directed towards saving energy, reduce migration time, avoid competition and 66 

predators, maximize reproduction, etc. (see e.g. Carmel and Ben-Haim (2005) in the case of foraging 67 

theory). In the case of movements in ocean currents the optimality solution to minimize migration time is 68 

analogous to solving Zermelo’s navigation problem (Zermelo 1931) where a boat crossing a shear flow at 69 

constant speed can reduce navigation time by deviating its route from a simple straight line linking initial 70 

and final destination points. However, animal migrations are subject to additional physiological and 71 

behavioural constraints that could modify the identification of optimal tracks when only a minimization of 72 

migration time is considered.  73 

In this paper, we present a minimal theoretical mechanistic framework to investigate optimal migratory 74 

routes in relation to ocean currents, behavioural and physiological constraints. The model links a 75 

description of different behavioural traits to the external factors during migration (e.g. ocean currents and 76 

turbulence) and provide the optimal navigational strategy in a stochastic environment. This approach is a 77 

generalization of Zermelo’s navigation problem where noise as well as animals’ behavioural and 78 

physiological constraints are specifically included.  79 

The model is illustrated for the case of sea turtle migrations in realistic conditions and contrasting ocean 80 

regions, where detailed description of migration routes are available in the literature. Hundreds of random 81 

tracks are generated in those areas, and the model outputs are compared with available observations. 82 

Further, the model is used to infer back the underlying behavioural traits shaping such migration routes, 83 

demonstrating skills and limitations of the proposed approach. We suggest that the optimality model 84 
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presented here could be combined with high-resolution animal tracking technologies to gain insight about 85 

the specific behaviour ecology of the migrants. 86 

 87 

 88 

2. Methods 89 

 90 

2.1 Model formulation 91 

We consider a minimal model for the migration of single individuals that are able to swim and adjust their 92 

velocity based on local ocean current conditions. We model the local ocean currents by the sum of a mean 93 

velocity component (i.e., v(x)) and a white-noise process with diffusion coefficient D. The latter represents 94 

small scale fluctuations associated to e.g., mesoscale and/or ocean turbulence processes. We further 95 

assume that an organism can control its movement and swim at the control velocity w. Then, the dynamics 96 

of the migrant can be described by the following Itō stochastic differential equation (Øksendal 2003):  97 

𝑑𝑋𝑡 = (𝑣(𝑋𝑡) + 𝑤(𝑋𝑡))𝑑𝑡 + √2𝐷𝑑𝐵𝑡 (1) 

  

where Xt is the position of the organism in two dimensions at time t, while Bt is two-dimensional standard 98 

Brownian motion.  For long-distance regular migrants, evolutionary constraints will benefit behavioural 99 

and physiological traits able to minimize the time needed to reach the target while limiting the energy 100 

spent on migration. Hence, we can define the total cost of travelling to the target:  101 

𝐶 =
𝛾

2
∫ |𝑤(𝑋(𝑡))|

2
𝑑𝑡 + 𝛽𝑇,

𝑇

0

 
(2) 

where T is the total duration of the migration event and  and  are the parameters defining the trade-off 102 

between time and energy, respectively. This cost explicitly describes the trade-off between time taken to 103 

reach the target and the energy expenditure required to swim at the control velocity w. We assume that 104 

the energy expenditure related to swimming scales with the square of the control speed which seems to 105 

be consistent with experimental data from turtles (Prange 1976). Other metabolic expenses (e.g., basal 106 

metabolism) are assumed to be a linear function of time. We do not consider energy acquisition during 107 

the migration (or only implicitly and at a constant rate). Within this framework, when the flow is absent, 108 
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the optimal control is trivially a straight line from the starting point to the target, but when the flow field 109 

is present  the optimal control can lead to a variety of trajectories (Bryson and Ho 1975; Comincioli 2010; 110 

Hays et al. 2014a). Zermelo’s problem was formulated as a deterministic control, while we consider here 111 

a stochastic component to account for both the variability of the ocean currents (e.g. mesoscale dynamics) 112 

and for the noise arising from imperfect decisions of the migrants. 113 

The cost C in Eq. 2 is random so the navigation strategy should minimize some statistic of the cost. Here, 114 

we introduce a risk-parameter  that accounts for the specific risk-sensitivity of the organism. Indeed, 115 

different individuals could weight differently the risk associated in moving under uncertainty conditions 116 

and a combination of risk-averse or risk-prone strategies could emerge (Wolf et al. 2007). This is similar to 117 

economic theory when agents need to consider the long-term implications of their instant decisions and 118 

could employ strategies to minimize the risks of worst case scenarios (Whittle 1990). To introduce a risk-119 

sensitivity trait in the model we hypothesize that the organism aims at minimizing (Howard and Matheson 120 

1972): 121 

𝐹 =
1

𝛼
𝑙𝑜𝑔⟨𝐸[𝑒𝑥𝑝(𝛼𝐶)]⟩ 

(3) 

This risk-sensitivity term adds an additional parameter changing the weight of the best or worst possible 122 

occurrences. As  tends to zero, we recover the risk-neutral strategy where the expected cost E[C] is 123 

minimized. However, if is small but finite, a Taylor's expansion shows that the function F becomes a 124 

linear combination of mean cost and variance, with  weighing the importance of the latter with respect 125 

to the former. In general,  > 0 corresponds to a risk-averse strategy, where outcomes with high values of 126 

the cost are penalized heavily so that the optimal strategy focuses on these worst-case scenarios (the goal 127 

is to decrease the variance). Conversely,  < 0 corresponds to a risk-seeking attitude where the few best-128 

case scenarios are rewarded (the variance is valued). 129 

Given the three behavioural traits ,  and  the cost F can be computed at all points of the ocean basin 130 

using Dynamic Programming (Bellman 1954; Øksendal 2003). F is then given as the solution to the 131 

following Hamilton-Jacobi-Bellman equation: 132 

𝑣 ∙ 𝛻𝐹 + (𝐷𝛼 −
1

2𝛾
) |𝛻𝐹|2 + 𝐷𝛻2𝐹 = −𝛽, 

(4) 

with boundary conditions F= 0 at the target and reflective (Neumann) boundary conditions elsewhere.  133 

This equation can be rewritten using the transformation (Dvijotham and Todorov 2011): 134 
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𝐹 =
1

𝛿
𝑙𝑜𝑔(𝑍), where 𝛿 = 𝛼 −

1

2𝐷
, 

(5) 

then leading to the following partial differential equation (PDE): 135 

𝑣 ∙ 𝛻𝑍 + 𝐷𝛻2𝑍 + 𝛿𝛽𝑍 = 0. (6) 

Once this equation is solved, the optimal control velocity at any point can be found using the gradient of 136 

the cost: 137 

𝑤 = −
1

𝛾
𝛻𝐹 

(7) 

The derivation of these equations is justified in more details in supplementary material S1. Eq. 6 is solved 138 

using COMSOL (COMSOL Multiphysics  v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden) 139 

coupled to MATLAB 2016b (MATLAB 2016b, The MathWorks Inc., Natick, MA, 2000, United States of 140 

America) via Livelink. The code needed to run the model described here is available as supplementary 141 

material. 142 

2.2 Reconstruction of behavioural parameters 143 

The objective of the statistical inference is to estimate the behavioural parameters based on observed 144 

tracks of the organisms, i.e. sets of points =(Xi, ti)i∈ [1, N], where Xi is the position of the organism at the time 145 

ti. For a given set of behavioural traits, the following quasi log-likelihood is defined: 146 

𝐿(𝜉 ∨ 𝛼, 𝛽, 𝛾) = − ∑ ∥ (𝑋𝑖+1 − 𝑋𝑖) − (𝑣(𝑋𝑖) + 𝑤(𝑋𝑖)) ∙ (𝑡𝑖+1 − 𝑡𝑖) ∥ ²

𝑁−1

𝑖=1

 
(8) 

This log-likelihood function measures the difference between the measured speed vector and the 147 

theoretical speed vector at each point of the track. The log-likelihood is maximized numerically with a 148 

Nelder-Mead algorithm (Lagarias et al. 1998), thus identifying behavioural traits that fit the migration 149 

event the best.  150 

Note that the two parameters we aim to reconstruct are and/ This is because varying 𝛽  and 𝛾 151 

together is redundant when 𝛼 = 0 and only the cost ratio 𝛽 𝛾⁄  matters. Conveniently, this ratio is also the 152 

most interesting value in an ecological context representing the relative allocation between swimming and 153 

metabolic expenditures. Similarly, we are interested in identifying the main patterns in risk-averse or risk-154 

seeking behaviour, hence we only focus on the sign of  more than on its absolute value. Indeed the exact 155 

value of  is difficult to associate to specific life-history characteristics and can also be expected to rapidly 156 

change over time.  157 

http://www.comsol.com/
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When 𝛼 is very small, we recover the cost ratio C from eq. (2) and thus the control w is invariant if we 158 

multiply both 𝛽 and 𝛾 by a constant λ: 159 

𝑤 =
−1

𝜆𝛾
𝛻(𝜆𝐹) =

−1

𝛾
𝛻𝐹. 160 

The diffusivity D is given and considered constant throughout the migration event. A value of 𝐷 =161 

1000𝑚² ∙ 𝑠−1 is used corresponding to an average horizontal turbulent diffusivity in the oceans (Cole et 162 

al. 2015). The effects of different values of the diffusion term have been analysed in more details in the 163 

supplementary material. Eq. 8 has been selected after testing different log-likelihood functions including 164 

those reconstructing the diffusivity values. We selected the log-likelihood function that reconstructed the 165 

behavioural traits in the theoretical case with the smallest error.  166 

To test the method, artificial trajectories with random behavioural traits were generated. Then 167 

behavioural traits could be inferred using eq. (8) and compared with the initial ones to evaluate the 168 

accuracy and precision of the reconstructing method. α could vary between -10 and 1, and β/γ between 169 

10−2 and 102. 170 

To better compare the reconstruction between different scenarios, the cost ratio has been 171 

adimensionalised, meaning that it is defined as β/(γ|w|2), with |w| the mean control speed during the 172 

migration. For each reconstructed parameter X (α or the adimensional cost ratio), we calculate the 173 

reconstruction error as  
𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑−𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
.  174 

 175 

2.3 Case studies 176 

Three case studies have been investigated ranging from purely theoretical to more realistic scenarios: (1) 177 

organisms crossing a shear flow (�⃗� = 𝑐𝑒𝑥⃗⃗⃗⃗⃗) from different starting points; (2) migrations of sea turtles from 178 

Ascension Island to the Brazilian coast mimicking observations on green turtles (Luschi et al. 1998); (3) sea 179 

turtle migrations from Diego García in the Indian Ocean to the Somalian coast (a migration route that was 180 

also observed for green turtles (Hays et al. 2014b)). The last two study cases used realistic oceanic 181 

conditions, with averaged ocean currents corresponding to the relevant migration periods obtained from 182 

the Operational Mercator global ocean analysis and forecast system (available at 183 

http://marine.copernicus.eu) with a frequency of one day and a spatial resolution of 10km. The 184 

oceanographic current field considered is the multi-year average (2007-2016) surface currents in the 185 

http://marine.copernicus.eu/
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region during the migration windows of the green turtles. To this average current velocity, we added the 186 

diffusivity term modelled as in Eq. 1. For the the Atlantic Ocean case, the migration window considered 187 

was between April and August (Luschi et al. 1998), and for the study case in the Indian Ocean between 188 

October and February (Hays et al. 2014b).  189 

 190 

3. Results 191 

3.1 Track generation 192 

3.1.1 Crossing a simple shear flow 193 

Different behavioural traits values (𝛼, 𝛽, 𝛾) generate substantially different trajectories when crossing a 194 

shear flow (Figure 1). Typically, lower values of α yield longer migration routes, as individuals would reduce 195 

their instantaneous cost to a minimum and swim actively only when it is necessary to reach the final 196 

destination. Risk-averse individuals tend to avoid regions of high currents pointing towards unfavourable 197 

directions. There is an inverse proportionality between 𝛽 and 𝛾  hence their ratio regulate the shape of 198 

the migration route. A high ratio  𝛽 𝛾⁄  means that the optimal strategy is achieved by reducing the 199 

migration time more than minimizing energy expenditures. Thus with high 𝛽 𝛾⁄  organisms should rely less 200 

on the currents, resulting in trajectories that are generally straighter and with a higher control speed, 201 

hence shorter navigation time. Varying𝛾 with a fixed 𝛽 would give the same results as varying 𝛽with a 202 

fixed 𝛾 (Figure 1).  203 

3.1.2 Migration from Ascension Island to Brazil 204 

Using random values for (𝛼, 𝛽, 𝛾) in an Atlantic Ocean setup and starting point on Ascension Island, we 205 

obtain tracks converging nicely to the Brazilian coast which is the assumed target destination region. The 206 

geographical locations of these tracks vary from northern routes (using the fast equatorial current in the 207 

north) to southern migrations with a course correction as approaching the Brazilian region. The simulated 208 

tracks resemble those observed in the feeding migration of green turtles although model tracks are 209 

generally straighter than the ones recorded. Indeed, some turtles have been observed to arrive at more 210 

northern regions than our tracks, making use of the southern edge of the Equatorial current (Luschi et al. 211 

1998). The obtained mean control speed in our simulations is in the range 0.74-1.69 km/h (1st and 3rd 212 

quartile, median 1.58 km/h) with the fastest migration at 3 km/h on average (supplementary material). 213 
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Interestingly, these optimal migration speeds are consistent with recorded transit speeds for green turtles 214 

from Ascension Island (0.9 and 3.1 km/h from Luschi et al. (1998) and Akesson et al. (2003)). 215 

 216 

 217 

3.1.3 Migration from Diego García to Somalia 218 

The monsoon-driven circulation in the Indian ocean (Schott and McCreary 2001) yields average ocean 219 

currents having a more complex spatial structure than those in the Atlantic Ocean case study. As a result, 220 

small changes in the behavioural traits can result in large displacement of the optimal migration tracks (Fig. 221 

3). Migrations are generally northwards but with different latitudinal gradients, resulting in routes close 222 

to a straight line to those displaying several course corrections patterns. The recorded migration patterns 223 

of green turtles in the Indian Ocean vary a lot indicating the potential role as milestones of the many small 224 

island in the region (Hays et al. 2014b). This factor—together with course correction driven by other 225 

environmental cues (e.g., temperature and salinity gradients, geomagnetic field (Akesson et al. 2003; 226 

Åkesson and Hedenström 2007))— is not included in the model, but on a qualitative level the simulated 227 

tracks are consistent with the observations. Optimal control speeds are somewhat low in this region (1st 228 

and 3rd quartiles are 0.62 and 0.92 km/h), which is slower than the total speeds recorded in the area for 229 

migrating turtles, between 2 and 2.8 km/h (Hays et al. 2014b). 230 
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 231 

Figure 1 Tracks of migrants crossing a 1 km-long shear flow. The time between two data points is 1 minute, 

and the colour code shows the ratio between advective and control speed v/w. a) Tracks for different 

values of 1, 0.1, 0, -0.1, 1, 10 (from left to right)b) Tracks for different values of : 10-2, 10-1, 1, 10, 

100 (from left to right). c) Representation of the shear flow used. 
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Figure 2 Tracks generated by the model in the Atlantic with random behavioural parameters. 

The arrival area is the red ellipse, and the departure points is the red circle (A, Ascension Island). 

Background is the current speed (in m/s), and the track colours represent the control velocity (in 

m/s). Dashed black line is an original migration track of green turtle, reproduced from Cerritelli 

et al. (2019). 
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 232 

Figure 3 Tracks generated by the model for organisms migrating between Diego García (DG, red 

circle C) and the Somalian coast (red dashed ellipse) with random behavioural parameters. 

Background is the current speed (in m/s), and the track colours represent the control velocity (in 

m/s). Dashed black lines are original migration tracks of green turtles, reproduced from Hays et 

al. (2014b). 

 233 

3.2 Behavioural parameter inference 234 

3.2.1 Reconstruction for the theoretical case 235 

Out of the 100 Monte-Carlo simulations of the model with different behavioural traits, some do not lead 236 

to viable trajectories. Moreover, a few iterations of the reconstruction algorithm do not converge. In total, 237 
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out of 100 simulations, 90 to 93 converge to a proper migration track and lead to a successful 238 

reconstruction. 239 

Inference of the sign of the risk-attitude parameter are reasonably accurate (Fig 4). Depending on the 240 

current strength, between 85 and 89% of the risk parameter signs are reconstructed correctly. Inference 241 

of the cost ratio is also relatively accurate: For a small current (c = 0.1), 63% of the points are correctly 242 

reconstructed within 10% accuracy. Within the same accuracy envelope, this fraction increases to 74% and 243 

84% when c=1 and when c=10, respectively.   244 

 245 

Figure 4 Top: Reconstruction of the sign of the risk parameter α and of the adimensionalized cost 

ratio in the theoretical cases. For the risk attitude: the dark share of the chart represents the 

misreconstructed signs, the dark grey the correct positive (risk-averse) reconstruction, and the 

light grey the correct negative (risk-seeking) reconstructions. Bottom: For the cost ratio: the 

histograms were constrained between -1 and 1, and all more extreme values were assigned to -1 

(if negative) or 1 (if positive). Each bar represents 10% of error. 

 246 

3.2.2 Reconstruction for oceanic migrations 247 

The reconstruction of the risk-attitude is better than in the theoretical case, with between 94 and 98% of 248 

correct reconstructions. The accuracy of the inference of the cost ratio reconstruction is also high:  72% of 249 

the tracks in the Atlantic Ocean (80% in the Atlantic Ocean) lead to reconstructions within 10% accuracy. 250 

However, despite these relatively good performances for such cases, there are a few outliers. For example, 251 

in the Atlantic case, 18% of the reconstructions lead to a cost ratio with an error of more than 200%. 252 
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 253 

Figure 5 Top: Reconstruction of the sign of the risk parameter α and of the adimensionalized cost 

ratio in the oceanic cases. For the risk attitude: the dark share of the chart represents the 

misreconstructed signs, the dark grey the correct positive (risk-averse) reconstruction, and the 

light grey the correct negative (risk-seeking) reconstructions. Bottom: For the cost ratio: the 

histograms were constrained between -2 and 2, and all more extreme values were assigned to -2 

(if negative) or 2 (if positive). Each bar represents 10% of error. 

 254 

4. Discussion 255 

We introduced a simple model to simulate optimal migrations under different behavioural traits and 256 

environmental conditions. The model makes explicit the trade-off between energy saving strategies and 257 

arrival time and includes the effects of navigational errors and ocean mesoscale, all considered important 258 

aspects in animal movements (Luschi et al. 2003; Åkesson and Hedenström 2007; Shamoun-Baranes et al. 259 

2010). Additionally, a risk-averse behavioural trait is introduced to identify strategies minimizing the risk 260 

of incurring in large (i.e., above average) costs during the migrations. A few other works have explored 261 

Zermelo’s problem in relation to migration before (e.g., in turtles (Hays et al. 2014a) or birds (McLaren et 262 

al. 2014)), but they did not consider time and energy constraints together and the different optimal 263 

strategies that may arise due to behavioural discrepancies between individuals. Additionally we note that 264 

we do not impose the swimming speed, but both navigation speed and headings are output of the model. 265 
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Our model generates optimal migration strategies under different behavioural and oceanographic 266 

scenarios.  When applied to simulate sea turtle migrations in realistic conditions, the model is able to 267 

reproduce some of the patterns observed by GPS-tracking. But not all behavioural strategies can lead to 268 

viable migrations, as animals cannot reach the target or the target is reached but outside a suitable time 269 

window. When provided with a large set of simulated tracks, the model can also be used to infer back the 270 

behavioural traits of the organism. Inference of these behavioural traits is proven to be often accurate but 271 

errors in the reconstruction are also reported. The model can provide new insight in the behavioural 272 

ecology of long distance migrations when used in combination with accurate high-resolution data on 273 

animal tracks.  274 

 275 

Learning and optimization of migration routes 276 

The way organisms select their migration route varies largely between species making it difficult to identify 277 

common mechanisms (Mueller et al. 2013; Dingle 2014). However, in different groups, individual learning, 278 

social learning and genetic constraints are all considered important components of successful migrations. 279 

For example, humpback calves learn their routes during their first years, while they are migrating with 280 

their mothers (Clapham and Mayo 1987). This results in later-stage migrations towards mother-defined 281 

feeding grounds (Weinrich 1998). Moreover, since whales migrate in pods (at least the females) they can 282 

possibly benefit from the social transmission of knowledge (Weinrich 1998), as it has been also 283 

hypothesized for other species such as tuna (De Luca et al. 2014) and birds (Mueller et al. 2013). Opposite 284 

to the mechanism of learning via social information transfer, turtle hatchlings are completely independent 285 

during their first migration (Carr 1987). Hence most likely they have limited, if any, social information about 286 

the migration route to take and the hypothesis is that they might rely on the initial dispersal phase to learn 287 

migration pathways between nesting site and feeding areas (Hays et al. 2014b; Scott et al. 2014).  288 

Regardless of how marine migrants learn their destination, it seems reasonable to assume that strategies 289 

minimizing migration time and energy expenditure are favoured in repeated migration events, as it has 290 

been found in birds and ungulates for example (Alerstam and Lindström 1990; Alerstam 2001; Bischof et 291 

al. 2012). However, results for adult turtles demonstrate that they are not following routes minimizing 292 

migration time alone (Hays et al. 2014a). Still they follow routes that are not far from this optimum and 293 

able to bring them to their goal. This could indicate that turtles have evolved a successful migration 294 

strategy to cope with the year-to-year variability of the ocean circulation, making it interesting to explore 295 
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optimal migration strategy against multi-year average ocean conditions. It has been suggested that 296 

migrating adult turtles cannot effectively perceive current deflection or that their navigation map is not 297 

accurate enough to allow optimum route finding  (Hays 2017). Here we suggest that including swimming 298 

cost and/or differences in individual behaviour could provide a more general framework to assess 299 

optimality conditions in long-distance migrants. 300 

 301 

Risk-attitudes and ocean currents 302 

Ocean currents are highly variable in space and time hence optimization should work on expected 303 

conditions over repeated migrations. In the model presented here, we considered average ocean current 304 

conditions in the relevant migration period and include a random term to simulate mesoscale activity or 305 

likewise to describe year-to-year variability. This should be conditions relevant for the emergence of 306 

optimal migration strategies in an environment with known stochasticity.  307 

The relationship between expected value and variability is introduced as an additional parameter in the 308 

model (α, Eq. 3). If α is zero the optimal strategies would only consider the average ocean currents, while 309 

for non-zero values the variance will matter. If α is positive the goal is to decrease the variance, i.e. to 310 

avoid worst-case scenarios in migrations. At first, it seems reasonable to assume that organisms may 311 

behave as to minimize the likelihood to encounter these high cost events during migration (showing risk-312 

averse behaviour). However, we cannot exclude  that some migrants could optimize for a more general 313 

trade-off, where an increased risk of high cost would possibly lead to an increased fitness (early arrival 314 

may mean the possibility to claim, for example, the best feeding or nesting grounds). In our simulations, 315 

we found that when adopting a risk-seeking attitude, some organisms will complete their migration in a 316 

more efficient way than risk-neutral or risk-averse individuals, thus reducing their energy expenditure. In 317 

some cases, risk-seeking migrants would of course have a worse outcome than organisms more prone to 318 

risk mitigation but this behaviour may still prove advantageous in the long run. 319 

In more general settings, behavioural experiments highlighted the potential benefits of a bold (or risk-320 

seeking) behaviour (Sundström et al. 2004; Hulthén et al. 2017): bolder fish tend to be more dominant 321 

than others, have a higher ingestion rate but also suffer a higher predation rate than shy individuals. 322 

Consequently, what risk attitude parameter may emerge for migration events is then a bit unclear, and 323 

would probably vary from population to population, and most likely among individuals too. Moreover, we 324 

only consider here the risk-attitude as either being risk-seeking or risk-averse. In reality, the risk-parameter 325 
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α is a continuous variable, and any level of risk may emerge. The reconstruction of the absolute value of 326 

the risk parameter is quite poor in our case (see supplementary material), and refining the reconstruction 327 

is needed before any conclusion on the absolute risk value of the organisms can be drawn. 328 

 329 

Model limitations and ecological implications 330 

The mathematical framework proposed is general enough as it relies on few assumptions on the 331 

interactions between turbulent flow and animal behaviour. The model is applied on oceanic migrations of 332 

turtles but it could similarly be of use in analysing long-distance migrations of other groups such as birds, 333 

whales, fish, etc. A major assumption is on the cost function (quadratic form for energy consumption and 334 

linear relation with time) enabling to reduce the mathematical system to a relatively simple linear PDE 335 

that is then solved with inputs on behavioural traits, current field and migration goal. A more general 336 

formulation of the cost function would consider the drag force on the migrants to be quadratic – as for 337 

the general case at high Reynolds number. This would then result in a metabolic cost of swimming which 338 

scales as the third power of the velocity, which would then complicate the numerical solution of the model 339 

as the linearized version will be no longer valid. However, for the specific case analysed here a quadratic 340 

metabolic cost is a good approximation for turtles swimming (Prange 1976). 341 

The cost function is also regulated by the details on the physiology of different organisms and by the way 342 

organisms perform in a turbulent flow. For example, whales can easily overcome the currents and swim 343 

towards their destination  (Horton et al. 2011), while fish and turtles have been found to rely more on 344 

ocean currents (Luschi et al. 2003; Girard et al. 2006). Consequently, migrations in turtles should give 345 

greater importance to energy saving strategies when compared to whales. This is a prediction that could 346 

be tested when accurate tagging data become available in the future.  347 

The feeding regime of organisms may also influence energy constraints during migrations. Some species 348 

can feed and replenish energy reserves while migrating (Åkesson and Hedenström 2007; Stamation et al. 349 

2007). Others such as green turtles cannot feed in the open ocean, and therefore need to manage 350 

cautiously their energy expenditure (Carr and Goodman 1970). The amount of control velocity an 351 

individual need to invest during migrations could be also regulated by the extent of the geographic shift. 352 

For example, in migrations towards high latitudes, seasonality is important and therefore a precise timing 353 

may be necessary to ensure sufficient time to complete tasks such as reproduction or feeding before it is 354 

time to migrate again (Both et al. 2010). When the migration is in more temperate regions, the timing may 355 
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be less critical, and the constraints on arrival time less important. Thanks to the recent effort in assembling 356 

global database on movement patterns (e.g. Sequeira et al. (2018), these hypotheses could now be tested 357 

with the model by inferring behavioural traits across different biogeographical regions. 358 

Organisms can in reality swim or fly in a three dimensional space and not only in a horizontal plane. In the 359 

case of sea turtles, this approximation is valid as they remain the vast majority of the migration close to 360 

the surface (Hays et al. 2001), where the vertical structure of horizontal currents does not change much. 361 

However, for other species diving deeper or flying, individuals may select the area with winds or currents 362 

that minimize migration cost (Gauthreaux 1991), subsequently optimizing their migration route in a 3D 363 

space rather than a 2D horizontal plane. 364 

 365 

Statistical inference 366 

The method used for the statistical inference of the behavioural traits performs reasonably well in case 367 

of strong flows, while reconstruction errors increase when conditions in ocean currents are weaker. This 368 

is not unexpected as weaker ocean currents yield weaker constraints in the migration model hence lower 369 

accuracy of the reconstruction algorithm. Different functions have been tested in our analyses of the 370 

river case and the results shown here are for the method that provides the best results. However, aiming 371 

at reconstruction of behavioural traits from tracking observations, further analyses are required to 372 

systematically assess the performance under more general environmental conditions. The algorithm 373 

used here (Nelder-Mead simplex algorithm, (Lagarias et al. 1998)) is robust and relatively time-efficient, 374 

but other algorithms may  be more efficient in the case of local minima leading to inaccurate behavioural 375 

traits reconstructions. Finally, the performance of the log-likelihood, as all parameter estimation 376 

methods, depends on the type of observations available. Hence, quality observations with many GPS-377 

data points are more likely to yield reliable estimates (and thus, to provide us with insights on the 378 

behavioural ecology of long-distance migrants) than observations with lower resolution. 379 
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5. Figure captions 530 

 531 

Figure 2 Tracks of migrants crossing a 1 km-long shear flow. The time between two data points is 1 minute, 

and the colour code shows the ratio between advective and control speed v/w. a) Tracks for different 

values of 1, 0.1, 0, -0.1, 1, 10 (from left to right)b) Tracks for different values of : 10-2, 10-1, 1, 10, 

100 (from left to right). c) Representation of the shear flow used. 

 

Figure 2 Tracks generated by the model in the Atlantic with random behavioural parameters. 

The arrival area is the red ellipse, and the departure points is the red circle (A, Ascension Island). 

Background is the current speed (in m/s), and the track colours represent the control velocity (in 

m/s). Dashed black line is an original migration track of green turtle, reproduced from Cerritelli 

et al. (2019). 

 

Figure 3 Tracks generated by the model for organisms migrating between Diego García (DG, red 

circle C) and the Somalian coast (red dashed ellipse) with random behavioural parameters. 

Background is the current speed (in m/s), and the track colours represent the control velocity (in 

m/s). Dashed black lines are original migration tracks of green turtles, reproduced from Hays et 

al. (2014b). 

 

Figure 4 Top: Reconstruction of the sign of the risk parameter α and of the adimensionalized cost 

ratio in the theoretical cases. For the risk attitude: the dark share of the chart represents the 

misreconstructed signs, the dark grey the correct positive (risk-averse) reconstruction, and the 

light grey the correct negative (risk-seeking) reconstructions. Bottom: For the cost ratio: the 

histograms were constrained between -1 and 1, and all more extreme values were assigned to -1 

(if negative) or 1 (if positive). Each bar represents 10% of error. 

 

Figure 5 Top: Reconstruction of the sign of the risk parameter α and of the adimensionalized cost 

ratio in the oceanic cases. For the risk attitude: the dark share of the chart represents the 

misreconstructed signs, the dark grey the correct positive (risk-averse) reconstruction, and the 

light grey the correct negative (risk-seeking) reconstructions. Bottom: For the cost ratio: the 

histograms were constrained between -2 and 2, and all more extreme values were assigned to -2 

(if negative) or 2 (if positive). Each bar represents 10% of error. 

 


