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Abstract5

Many large pelagic organisms appear to select specific oceanic conditions, probably due to phys-6

iological, energetic, reproductive, or other life history needs. However, prior to characterizing these7

dynamics and determining their underlying drivers, the selection itself must be reliably identified.8

Our ability to do so depends on the quality of animal locations and on the heterogeneity of the9

environmental conditions driving selection. To draw meaningful conclusions about environmental10

selection of large organisms and therefore about their basic ecology, distribution, and ultimately their11

potential exploitation and conservation, limits of selection detectability must be established. Here,12

we investigate how animal location accuracy and environmental variable decorrelation length scales13

impact the ability to detect environmental selection by marine organisms. We create synthetic tracks14

cuing on environmental variables potentially relating to life history demands like sea surface tem-15

perature, chlorophyll-a concentration, and Lagrangian coherent structures. By artificially imposing16

different animal selection strengths and location accuracies, we assess how well environmental se-17

lection can be detected statistically in different cases. We found medium or strong selection to be18

reliably detected, even with relatively small samples and large position uncertainty, while weak selec-19

tion presents similarly to no selection, especially for large sample sizes and position uncertainties. We20

therefore recommend using a selection strength threshold, which can significantly reduce the number21

of false positives while only increasing the risk of false negatives in cases of very weak selection,22

which are also less meaningful ecologically. We provide criteria to use when assessing confidence in23

environmental selection results for real marine organisms.24

Keywords— movement ecology, habitat selection, environmental selection, biotelemetry, decorrelation length25

scale26
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1 Introduction27

Marine ecosystems provide humanity with a number of important ecosystem services, including tourism and28

furnishing food for a growing portion of the world’s population (Peterson & Lubchenco 1997). However, marine29

ecosystems (and consequently the services they provide) are increasingly threatened by pollution, overexploitation,30

habitat destruction, and climate change (Dulvy et al. 2003, Lotze et al. 2006, Halpern et al. 2008). Preserving31

marine ecosystems in the face of continued and increasing human exploitation requires careful spatial planning32

and management. Effective management is only possible if researchers and management agencies are able to33

observe and characterize the spatial ecology of marine species and ecosystems. Importantly, assessing the spatial34

ecology of oceanic species has historically been very difficult due to the sheer scale of their habitats (i.e. the open35

ocean), their highly mobile nature, the dynamic nature of oceanic ecosystems, and, perhaps most importantly, the36

logistical and technological difficulties associated with actually studying these animals in the wild (Block et al.37

2002).38

Understanding how mobile marine organisms react to various oceanographic features is critical for informing39

management of these species and ecosystems. Marine organisms may favour and select more or less strongly for40

specific environmental conditions, such as specific ranges of sea surface temperature or chlorophyll-a concentration41

that can be tracked remotely from satellites (Abrahms et al. 2019, Lee et al. 2021, Pinti et al. 2022). By associating42

the distribution of marine species with particular environmental conditions, we can characterize environmental43

selection in these animals and predict environmental mismatches that may arise because of climate change (Pörtner44

& Knust 2007, Møller et al. 2008). The first step to predicting the ecosystem’s adaptive capacity is to identify45

the environmental selection (Kai et al. 2009, Oliver et al. 2019, Hazen et al. 2021, Fahlbusch et al. 2022) and to46

separate the selection signal from observation errors. These errors may arise from position uncertainty for the47

animal locations (Braun et al. 2023), or from a mismatch of the scales at which animals react to environmental48

variables and those at which they are observed (Scales et al. 2017).49

To estimate animal locations, a wide array of electronic tag technologies are available, each with their own50

specificities and with different spatio-temporal resolutions and accuracies (Hussey et al. 2015). For example,51

acoustic telemetry records precisely when an animal carrying an acoustic tag is within the range of an acoustic52

receiver, but does not provide any information when animals are outside those detection ranges (Matley et al.53

2021). Pop-up satellite archival tags (PSATs) rely on light levels to compute time of dawn, dusk, and day duration54

(sometimes coupled with sea surface temperature or other measurements) to estimate the position of individuals,55

but that means that position uncertainties routinely reach hundreds of kilometers (Gunn 1994, Sibert et al.56

2003). Positions obtained from ARGOS tags are generally much more precise (∼100s of meters to kms), although57

their uncertainty can sometimes reach 10s to 100s of kilometers, too. Additionally, ARGOS tags require the58

animal to stay at the surface for some period of time so that multiple ARGOS satellites can triangulate the tag59

position (Douglas et al. 2012). The development of Fastloc GPS tags has facilitated the collection of much more60

precise location data with uncertainties only up to a few meters, even for animals that only surface briefly (Dujon61

et al. 2014, Thomson et al. 2017). While these technologies all provide similar types of data, the large range of62

uncertainties associated with their respective location estimates means that they cannot be used interchangeably63

and that the ecological question that is being investigated should dictate the kind of biologging technology used.64
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As pop-up satellite archival tags are often the only possibility for studies of pelagic organisms that do not surface,65

large uncertainties are a particular challenge for assessing habitat selection in marine organisms. Using tracks66

with very large location uncertainty may yield incorrect results or blur selection signals.67

Environmental conditions also vary in space and time, and their measurements come with their own uncertain-68

ties. Decorrelation length scales (DCLS) estimate the spatial distance over which a variable (e.g., temperature)69

remains correlated. Formally, the DCLS is the distance at which the correlation between the time series of a70

variable (or its anomaly) drops below a certain value, typically 1/e (Kuragano & Kamachi 2000, Hosoda & Kawa-71

mura 2004, De Benedetti & Moore 2017). It can be thought of as the typical scale of a coherent feature (such as72

a front or eddy), as captured by the dataset. These length scales vary greatly between different environmental73

variables; they also vary based on the resolution of the observations. We hypothesize that decorrelation length74

scales impact our ability to investigate habitat selection in marine organisms. To detect selection, animals would75

have to traverse length scales longer than the decorrelation length scale in a given region. We also postulate76

that the environmental selection of dynamic fields with very small decorrelation length scales needs to be studied77

at a fine scale, and thus requires more precise estimates of animal location and higher resolution environmental78

fields than the investigation of animals selecting for less dynamic environmental variables with larger decorrelation79

length scales.80

Here, we investigate how the interplay between animal location accuracy, selection strength, and decorrelation81

length scales of environmental variables impacts our ability to statistically detect habitat selection by marine82

organisms. To do so, we create synthetic animal tracks with predetermined selection strengths for different envi-83

ronmental conditions. The specific environmental variables used are sea surface temperature (SST), chlorophyll-a84

concentration, and a Lagrangian metric, Finite-Time Lyapunov Exponents (FTLE), that captures the tendency of85

ocean currents to aggregate or disperse passive tracers (Haller & Yuan 2000, Shadden et al. 2009). By comparing86

these synthetic tracks with generated pseudo-absences that mimic the movements of similar but environmentally87

naive individuals, we are able to determine what level of location accuracy is required to definitively identify88

selection for the studied environmental variables. In addition, we introduce the notion of “effective selection”89

(combining both the test statistic and the significance level of Kolmogorov-Smirnov tests), significantly decreas-90

ing false-positive results in the absence of selection while only marginally increasing the rate of false-negative91

results at high sample sizes.92

2 Methods93

2.1 Environmental variables and decorrelation length scale94

Three different environmental fields are used in this study: sea surface temperature (SST), chlorophyll-a concen-95

tration, and Finite-Time Lyapunov Exponent (FTLE) (figure 1 A-C).96

SST and chlorophyll-a concentration are taken from MODIS-Aqua observations (JPL/OBPG/RSMAS 2020,97

NASA Goddard Space Flight Center et al. 2022). These fields have a native 9 km spatial resolution. The native98

time resolution is 1 day, but the data are processed so that each day consists of a backward rolling average of the99

previous 8 days to increase data coverage, by decreasing missing data due to clouds and incomplete daily satellite100
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coverage.101

FTLE are a tool for differentiating regions of the ocean subject to high dispersal from those prone to accumu-102

lation of passive tracers (e.g. Waugh et al. 2012, Sulman et al. 2013, Peacock & Haller 2013, Allshouse & Peacock103

2015, Haller 2015, Hadjighasem et al. 2017, Callies & von Storch 2022). They measure relative dispersion, i.e. how104

far nearby water parcels separate or come together over a specified time interval. FTLE are a function of ocean105

currents, which are taken here from a global run of the Hybrid Coordinate Ocean Model (HYCOM), experiment106

19.1, carried out by the Naval Research Laboratory at Stennis, MS, and archived by the HYCOM consortium at107

hycom.org. The FTLE are computed using an along-trajectory velocity gradient integration on the model archive108

grid, which has a 1/12.5 ◦ (∼ 9 km) native resolution (Huntley et al. 2015).109

We hypothesize that some marine organisms are attracted to regions of the ocean whose currents were con-110

ducive to accumulation of particles (e.g., plankton) over the recent past (Della Penna et al. 2015, Oliver et al.111

2019, Lieber et al. 2023). Therefore, FTLE are derived from an integration backward in time over 3 days. The112

sign convention adopted here has large positive FTLE values correspond to highly attracting regions – water113

parcels that started far apart end up close together at the point in question and at the index time.114

In addition, we also investigate the influence of data coverage by creating an environmental product corre-115

sponding to the FTLE product with the same data coverage as chlorophyll-a. In practice, we removed FTLE116

data where chlorophyll-a data was missing, effectively testing whether data gaps would affect our results.117

For these three environmental variables (SST, chlorophyll-a, and FTLE), we compute the zonal (in the East-118

West direction) and meridional (in the North-South direction) decorrelation length scale (DCLS), defined as the119

e-folding scale of the variable anomalies (Hosoda & Kawamura 2004, De Benedetti & Moore 2017), i.e., the120

distance at which the correlation between two time series of the same variable drops below 1/e. In practice, we121

start by subtracting the climatological signal (computed as the average for each calendar day over the period122

2000-2010) from the daily signal. Then, for each reference point, we compute the correlation between the time123

series at that reference point and nearby time series. The distance at which the correlation drops below 1/e (in124

either the positive or negative direction) is taken as the DCLS at the reference point. The time series used here125

are 80 days long, spanning from May 1st 2006 to July 19th 2006, which is the same time period as the one over126

which the animal tracks are generated (see below).127

2.2 Generation of synthetic animal tracks128

For each of the three environmental variables, we created an array of 100 80-day long tracks, hereafter re-129

ferred to as synthetic tracks. We vary the strength κ of environmental selection (κ = 0 for no selection,130

κ = 0.25, 0.5, 0.75, 1, 2, 5, 10, 20 for increasing selection strengths for high values of the target environmental131

variable)and the level of uncertainty σ assigned to the locations within these tracks. The standard deviations132

associated with the track locations are σ = 0 (exact location), 1 km, 10 km, 25 km, 50 km, and 111 km (∼ 1◦).133

Our total dataset of synthetic tracks then consists of 9 x 6 x 3 (9 different κ values and 6 different σ values for134

the 3 environmental variables used) sets of 100 tracks, i.e. 16,200 tracks.135

The synthetic tracks of daily positions are generated as biased random walks, following Pinti et al. Pinti136

et al. (2022), although here step lengths are not fixed, to better mimic the daily movements of marine organisms.137
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For each track, a random starting location is picked in the North East Pacific, with latitude between 10 and138

40◦N and longitude between 140 and 130◦W. Then, for each time step, the location of the highest value of the139

target variable within a 50 km radius is found, and the distance and bearing to that location are computed. The140

bearing of the actual step is then computed by modulating this bearing by a random angle drawn from a Von141

Mises distribution with mean 0 and concentration κ (figure 2A). The step length is the distance to the location142

of highest value modulated by a random distance drawn from a normal distribution with mean 0 and standard143

deviation 10
κ+0.5

(figure 2B), except for κ = 0. The case κ = 0 mimics environmentally naive organisms, and to144

be sure that no information about the environment can be used for pseudo-absences generation, the step length145

is only drawn from a normal distribution with mean 50 km and standard deviation 10
κ+0.5

= 20 km.146

2.3 Generation of pseudo-absences147

Following Pinti et al. (Pinti et al. 2022), three different kinds of pseudo-absences are generated: Brownian motion,148

Correlated Random Walks, and Joint Correlated Random Walks. Pinti et al. also explored using Lévy walks as a149

null model, but concluded that they could lead to high rates of false positive results – hence our use of only three150

different kinds of null models here. For each synthetic track, 100 tracks of each null models are generated, for151

a total of 300 pseudo-absences for each presence record from the synthetic tracks. Uncertainties associated with152

pseudo-absence locations are the same as the uncertainties associated with the generated synthetic locations.153

Each pseudo-absence track starts at the starting location of its corresponding synthetic presence track, and is154

reset to the actual synthetic animal location at the beginning of every month, following Pinti et al.’s analysis (Pinti155

et al. 2022). Therefore, pseudo-absence tracks are maximum 31 days long. This ensures that pseudo-absences156

are constrained to the area around the real track and could still be reasonably considered to be in the same157

environment (Pinti et al. 2022).158

Each null model generates locations based on step lengths and turning angles. The three null models differ159

only in the way they generate these step lengths and turning angles. For Brownian motion, the turning angle160

is drawn from a uniform distribution bound between -180◦ and 180◦, and the step length is drawn from a161

normal distribution with mean and standard deviation equal to the mean and standard deviation of the step162

length distribution of the synthetic track. Correlated Random Walks and Joint Correlated Random Walks are163

simulated by drawing turning angles and step lengths directly from the empirical distribution of the synthetic164

track. The difference between these two is that for correlated random walks step length and turning angles are165

drawn independently, whereas for joint correlated random walks the ordered pair (step length, turning angle) is166

drawn from a single step. Resulting pseudo-absences tracks for κ = 1 are pictured in figure S3.167

2.4 Statistical analysis168

Environmental data from the three variables are matched to each animal presence and pseudo-absence. When169

location uncertainty is greater than 0, however, it is not clear that the value at the recorded location is rep-170

resentative of the animal’s environment. To account for this uncertainty in animal presence data, we average171

the environmental variables around each location, assuming a 2D Gaussian error distribution (i.e., the closer the172

observation is to the estimated location, the stronger the weight of this observation). The standard deviation for173
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the distribution is set equal to the position uncertainty, hence accounting for the higher probability of having the174

animal in locations close to the most likely position estimate while still capturing the environmental variability175

within the range.176

To test if there is evidence of selection, we perform one-sided Kolmogorov-Smirnov (KS) tests, as implemented177

in ks.tests of the R stats package (R: A language and environment for statistical computing, R Development Core178

Team). KS tests compare two cumulative distributions, with the test statistic D being the maximum distance179

between the two cumulative distributions. Here, the cumulative distributions correspond to the distribution of180

environmental variables matched to presence and pseudo-absence tracks, respectively. As such, D can be used181

as a proxy to estimate selection strength. The null hypothesis is that the cumulative distribution of the target182

environmental variable for presences is “not less than” (or “not greater than”) the cumulative distribution generated183

from pseudo-absences. For the “not less than” test, if the null hypothesis is rejected, it means that the presence184

cumulative distribution function is below that of the pseudo-absence. The environmental variable distributions185

are shifted toward higher values, and animals select for high values of the environmental variable (e.g. higher186

temperatures or areas with higher chlorophyll-a concentration) compared to environmentally naive organisms.187

Conversely, for the “greater than” test, it means that animals select for lower values than environmentally naive188

organisms. Throughout this manuscript and unless specified otherwise, the significance level is set at α = 0.05.189

Practically, very weak selection can in many cases not be distinguished statistically from no selection based on190

a finite sample (nor is it ecologically relevant). Therefore, we also impose a threshold on the magnitude of the191

difference itself: we consider that animals are effectively selecting for higher (or lower) values of the environmental192

variable if the test result is significant (p ≤ 0.05) and the test statistic D is greater than 0.05. This threshold was193

chosen as to decrease the rate of false-positive results in the absence of selection. This notion of effective selection194

allows us to discard false-positive results at high sample sizes in the absence of selection or at very weak selection195

strengths (see e.g. left columns of figures 5 and S8).196

3 Results197

3.1 Tracks and environmental variables198

The three environmental products considered (SST, chlorophyll-a concentration, and FTLE) have different spatial199

characteristics (figure 1). First, the SST field is smoother than the chlorophyll-a field, which is smoother than the200

FTLE field. In the North East Pacific, the decorrelation length scales (DCLS) of the SST field vary between ∼50201

and 800 km, while the DCLS of chlorophyll-a and FTLE vary between 0-400 km and 0-100 km, respectively. The202

median DCLS of the three products in the study region captures the differences in their spatial variability. SST203

has a median zonal DCLS of 130 km and a meridional DCLS of 111 km, while chlorophyll-a has median zonal204

and meridional DCLS of 46 and 47 km, and both FTLE DCLS are 27 km. Generally, zonal DCLS have higher205

maximum values than meridional DCLS, even though the means are very similar for chlorophyll-a and FTLE.206

Because of the different spatial structures of these variables, the tracks generated based on the environmental207

selection of these fields are qualitatively different, especially at higher selection strengths (figure 3; for more208

samples see S2). Tracks selecting for higher SST tend to be more spread and south-ward, while tracks strongly209
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selecting for chlorophyll-a and FTLE organize around ridges. Pseudo-absence tracks do not have a well defined210

structure as they are not cuing on any environmental variable (figure S3).211

The resulting distribution of SST, chlorophyll-a and FTLE for tracks strongly selecting for higher values of212

the environmental variables are shown in figure 4 (and histograms of environmental variable distributions for213

tracks with different selection strengths are plotted in figures S4, S5, and S6). For high selection strengths, as214

expected, the distribution of presence data is shifted towards higher values of the environmental variable compared215

to pseudo-absences. As κ decreases, the distribution of presence data shifts towards the distribution of pseudo-216

absences, all the way to κ = 0 where synthetic presence and pseudo-absence points have very similar distributions,217

consistent with the fact that this corresponds to animals not selecting for environmental variables. As σ increases218

(i.e. as location accuracy decreases), the overlap between distributions generated by animal presences and animal219

pseudo-absences increases, especially for FTLE and chlorophyll-a concentration (figure 4). This is because the220

larger scale averaging means that all values are more similar to each other, especially for environmental products221

with lower DCLS. The statistical analysis unravels the differences between these distributions as κ and σ vary.222

3.2 Statistical analysis223

To understand the interplay between position uncertainty σ, selection strength κ, and environmental variable224

DCLS, we have run a total of 162 experiments (6 values of σ, 9 values of κ, 3 environmental fields with different225

DCLS). In the following, we will focus on a selection of the results while describing the general patterns.226

Figure 5 shows the value of D for selection for higher values as a function of sample size (number of tracks).227

The corresponding data for selection for lower values is given in figure S8). As suggested by the probability228

density functions of environmental variables, the stronger the selection and the higher the location accuracy, the229

higher the test statistic. In addition, the FTLE field with gaps did not reveal results qualitatively different from230

the complete FTLE field (figures S7 A-D and S8 M-P).231

As the sample size increases, D decreases and converges to a point that depends on the environmental variable232

considered, the strength of the selection, and the location accuracy. In the absence of selection (κ = 0), some233

tests yield differences in distributions that are statistically significant results, yet with very small D (< 0.05).234

A possibility to decrease these false-positive results would be to decrease the significance level below α = 0.05.235

However, p-values usually decrease as sample sizes increase (figures S9-S16) and at large sample sizes they can236

reach values as low as 10−5 in the absence of selection (e.g. figures S10 O, P and S15 M, N, O, P). Decreasing the237

level of significance to 10−5 would strongly decrease the rate of false-positive results in the absence of selection,238

but it would also increase consequently the rate of false-negative results in the presence of selection with limited239

sample size or with low accuracy. For example, setting the significance limit to 10−5 would require more than240

30 tracks to reliably detect selection for higher SST in the case κ = 0.25, even when the tracks are reported241

with perfect accuracy (figure S9 I). If the tracks have an uncertainty of 50km, which is not unusual for animals242

tracked with ARGOS tags (Douglas et al. 2012), detecting selection for high chlorophyll-a concentration requires243

more than 20 tracks in the case of strong selection (κ = 2 or more), and more than 80 tracks in the case of weak244

selection (κ = 0.25) (figure S10 C and K). These very large sample sizes are very rare in ecological studies, and245

setting up such a stringent threshold would hinder our ability to detect selection in most practical cases. The case246
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κ = 0 with perfect position accuracy reveals that different animals following different movement models are likely247

to sample slightly different environments even without a selection bias. These very small differences show up even248

with very large sample sizes, but they are not ecologically relevant. Thus, we decided to evaluate effective selection249

here, i.e. selection with a p-value below 0.05, but with D ≥ 0.05. This ensures that statistically significant results250

are not wrongly categorized as “selecting” for higher (or lower) values of environmental variables, while still being251

able to detect selection when it is strong enough.252

The ability to detect effective selection depends on sample size, selection strength, and location accuracy253

(figures 6, S26 and S17-S20 for selection for high values of environmental variables, and figure S25 for selection254

for low values of environmental variables). For FTLE with and without data gaps (figures 6 I-L and S26 A-D),255

the results are similar, suggesting that the method is not too sensitive to incomplete data coverage.256

In the absence of selection, a large enough sample size allows us to confidently rule out effective selection257

(figure 6 A, E, and I). In the case of SST, more than ∼ 20 tracks (or 5 years of data) allows us to rule out258

effective selection irrespective of the location accuracy. For both chlorophyll-a and FTLE, the sample size needed259

to rule out selection varies between 13-18 tracks (3-4 years of data) and more than 45 tracks (∼ 10 years of data)260

depending on location accuracy (the more uncertain the track, the more data are needed). At the other extreme,261

when the selection is strong (κ ≥ 2), it is possible to detect effective environmental selection even with high262

location uncertainty and limited sample size (figure 6 D, H, and L). As selection strength is weakened(κ = 0.75),263

large position uncertainty begins to have an impact on selection identification skill, at least for the variables264

with shorter DCLS (figure 6 C, G, and K). It is at weak selection strength (κ = 0.25) that the relationship265

between location accuracy, sample size, and identification skill becomes more complex (figure 6 B, F, and J). For266

chlorophyll-a and FTLE, the general pattern of higher detection skills for larger sample sizes holds, except for cases267

with high position uncertainty. For SST, regardless of position uncertainty, figure 6 B shows the counter-intuitive268

pattern that smaller sample sizes allow for a more reliable identification of effective selection bias. This is a direct269

result of the D thresholding (figure 5 B, F, and J): at small selection strength, the SST sample distributions for270

presence and pseudo-absence tracks differ only slightly for large sample sizes (and similarly for chlorophyll-a and271

FTLE in cases with large position uncertainty). The differences are insufficient to be picked up as indicators of272

bias. The larger D values for smaller sample sizes mean that our algorithm detects selection bias. However, we273

caution that these larger values are not an indication of the strength of the bias but an artefact of undersampling.274

4 Discussion275

4.1 Detecting and quantifying environmental selection276

In this paper, we explored our ability to detect marine animal environmental selection using KS tests,277

depending on a number of environmental and technical limitations. The ability to detect environmental278

selection depends on the DCLS of the environmental variable considered, on the selection strength of279

the animal, and on the sample size and accuracy of the tracking dataset available. While we focus on280

SST, chlorophyll-a, and FTLE in this study, our results are transferable to other environmental variables.281

Once the DCLS of other variables are computed, one can refer to the variable with a similar DCLS in282
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figure 6 to assess confidence in their selection results.283

Setting a threshold on the test statistic D enables us to detect effective selection, thus considerably284

decreasing the risk of false-positive results while moderately decreasing our ability to detect very weak285

selection. We found that setting the D threshold at 0.05 and the significance threshold at 0.05 yields286

to reliable selection detection (termed here effective selection), given enough data. The amount of data287

needed to have full confidence in a positive result depends on the DCLS of the investigated environmental288

variable, and can be defined as the amount of data necessary to fully rule out environmental selection in289

naive marine organisms (figure 6 A, E, and I). As an upper limit, more than 10 years of daily tracking290

data (∼ 3, 650 daily location estimates) was enough to have no false-positive results, no matter the DCLS291

of the environmental variables investigated here.292

Another important result of this study is the possibility to quantify selection using the test statistic D293

as a proxy for selection strength. Indeed, for a given track accuracy, the stronger the selection strength,294

the higher the asymptotic D value as sample size increases (figure 5). Provided with a large enough295

dataset of animal tracks, performing KS tests on increasing fractions of the dataset can reveal if the test296

statistic obtained for the entire data set is close to a converged value or not – and thus if the selection297

strength can be confidently quantified.298

299

4.2 The different types of animal tracking data and their impact on envi-300

ronmental selection detection301

A major discrepancy between real animal tracking datasets and the presence tracks generated here is302

that observed data can have varying accuracy and are not necessarily evenly spaced in time. Processing303

the data with a state-space model allows us to resample the track evenly (Jonsen et al. 2005). However,304

state-space models usually assume that animals follow correlated random walks without accounting for305

environmental selection, thereby biasing processed data against selection detection. In addition, the306

spatial uncertainties associated with processed points temporally far away from observed points is usually307

greater – further increasing the range of location uncertainties within tracks. As we assumed here that308

location uncertainty was homogeneous within the entire dataset, adapting this method to real animal309

location may require discarding location estimates that are too uncertain.310

This consideration is particularly important for more uncertain tracking methods. Fastloc GPS tags311

provide accuracy within 700 m and most of the time within 50 m (Dujon et al. 2014), well below the312

resolution of the environmental products considered here. However, ARGOS and PSATs have larger error313

ranges. ARGOS tags provide locations with a quality location class (Douglas et al. 2012), allowing the314

filtering of data to keep only the most precise – at the expense of sample size (Thomson et al. 2017).315

PSATs, because they mostly geolocate animals thanks to light levels and SST (even though other variables316

such as bathymetry, magnetic field, or temperature profiles can be used (Nielsen et al. 2019, 2020, Braun317
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et al. 2018)), have an even wider range, with errors in actual positions routinely around 1◦ in longitude318

and latitude (Wilson et al. 2007). Yet, for highly migratory marine species, it appears that PSATs can319

perform better than ARGOS tags when building species distribution models (using other methods than320

ours, such as generalized linerar or additive mixed models, or boosted regression trees) using variables321

with high DCLS (Braun et al. 2023). This highlights the importance of considering the scale of the322

question being investigated. Following the results of this study, we recommend using either ARGOS or323

GPS tag records when investigating environmental selection in marine organisms for variables with low324

DCLS. In general, generating the most accurate location data possible is often the safest way to get325

reliable results. In particular, when limited to PSATs data because of the ecology of the animal, relying326

on manufacturer-provided geolocation models often yield inaccurate results relative to more advanced327

geolocation models (Braun et al. 2018, Nielsen et al. 2023). More precise locations will naturally lead328

to more accurate ecological results, and will also enable investigating ecological questions requiring more329

precise data, such as the selection of environmental variables with comparatively lower DCLS than would330

be possible without these data.331

332

4.3 Scale, resolution, and accuracy of environmental variables333

In addition to the resolution at which animal locations are observed, the scale at which we acquire334

oceanographic data is important when investigating environmental selection. The datasets we use here335

have a fixed 9 km resolution (8 km in the case of FTLE), smoothing variability at smaller scales and336

making sub-mesoscale features undetectable. Spatial resolution can be finer if environmental data are ac-337

quired differently. For example, Lagrangian coherent structures have been computed from high frequency338

radars from 6 km down to 500 m depending on the frequency used (Kim et al. 2011, Berta et al. 2014,339

Oliver et al. 2019), but usually at the expense of spatial coverage. Spatially averaging the environmental340

data increases spatial coverage, creating a trade-off between data coverage and spatial resolution. In341

addition to technical considerations regarding this trade-off, this raises ecological questions as to what342

scale is appropriate when investigating selection of marine organisms. A larger scale may be necessary to343

have a good spatial coverage, but may blur small variations that animals may use and select for. As it is344

not possible to detect selection happening at a finer scale than the resolution of the data, it is important345

to match the scale at which animals can move and the scale at which we can acquire environmental data346

as well as possible.347

The way oceanographic data are acquired dictates their resolution, but also their accuracy. While348

data observed in situ (and, to a lesser extent, remotely sensed data) have a relatively strong spatio-349

temporal accuracy, data generated by models may have lower accuracy. For example, the FTLE used350

here are computed from HYCOM model outputs and not directly observed. Several studies have found351

that the uncertainties in predictions of trajectories and Lagrangian Coherent Structures computed from352

10



HYCOM model outputs are, on average, 50 km, with outliers as large as 100 km (Muscarella et al. 2015,353

Huntley et al. 2011, Thoppil et al. 2021). Here, this discrepancy is irrelevant as the tracks are synthetic354

and generated using the model FTLE outputs directly, but it is of importance when dealing with real355

tracks of animals that are cuing on actual Lagrangian structures. Incorporating the environmental data356

uncertainty in this method will likely have the same effect as considering the track uncertainty – it will357

average out specific values that animals may cue on with background conditions, thus decreasing our358

ability to detect selection.359

Data coverage is another factor that might influence our ability to detect selection. The amount of360

missing data differs for the three environmental fields (figure S1). As the FTLE field is a model output,361

there are no data gaps, while there are some in the SST and even more in the chlorophyll-a fields. Thus,362

not all points could be matched to all environmental variables (table 1). While the same number of363

tracks were used with all three variables, this translates into a different number of data points with364

matched environmental variables, with FTLE having the most data points and chlorophyll-a the least.365

The number of data points also increases as the assumed accuracy of location estimates decreases, as366

less precise estimates mean that the average is performed across a larger area and thus more likely to367

encompass existing environmental data.368

369

4.4 Increasing sample size: beware of heterogeneity370

Larger animal tracking datasets lead to improved confidence in selection detection. Therefore, it is371

tempting to aggregate data from different sources, geographic locations, time of the year, or even from372

different years to increase sample size. However, disregarding the variability that can exist in datasets may373

yield to inaccurate results. Populations from different geographic areas may experience a different range374

of environmental conditions. Thus, different populations might be adapted to and select for different375

environmental conditions – such as shark species living in pelagic environments and very clear waters in376

the Pacific Ocean but near the coasts in turbid environments in the Atlantic Ocean (Merson & Pratt,377

Jr. 2001, Papastamatiou et al. 2006). Animals may change behavior and selection strategy as they grow378

(ontogenetic niche partitioning, (Grubbs 2010)) or throughout the year, for example when they migrate to379

colder, lower latitudes (Horton et al. 2011), or when they move between offshore and inshore grounds with380

different productivity levels (Weng et al. 2007). Finally, conditions may change over time, for example381

as a result of climate change – resulting in changing experienced environmental conditions for organisms,382

such as a decrease in available prey (Meyer-Gutbrod et al. 2023).383

Depending on the flexibility of animal movements, these longer-term, multi-year changes in envi-384

ronmental conditions may be chosen or imposed on marine organisms. Migrating organisms can follow385

specific cues and select for particular environmental conditions, or they can also use memory to reproduce386

movement patterns of previous years – potentially resulting in a mismatch with their optimal environmen-387
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tal conditions (Abrahms et al. 2019, Fagan 2019). How the changing baseline will impact environmental388

selection in marine organisms is yet to be determined and will depend on how much animals rely on389

memory vs. environmental cues. To this end, it would be useful to compare animals tracks not only390

to instantaneous environmental products but also to past variables and variables averaged at different391

temporal scales to understand the importance of conditions experienced in the past in shaping marine392

animals’ movements and environmental niches.393

5 Conclusion394

The accuracy of animal location, as well as the spatial variability in environmental variables (measured395

through decorrelation length scales) impacts our ability to detect selection in marine organisms. As pre-396

viously shown (Pinti et al. 2022), increasing sample size allows for more robust detection of environmental397

selection, except when selection is very weak. Setting a significance level at 0.05 and a cumulative dis-398

tribution difference threshold level at 0.05 to detect effective selection in marine organisms significantly399

reduces the risk of false-positive results, while only increasing the risk of false-negative results in the case400

of very weak selection strength.401

The amount and accuracy of tracking data needed to detect selection depends on the DCLS of the402

environmental variable tested. In practice, data acquired with Fastloc GPS (and ARGOS) tags are403

the most precise and thus the most efficient to use when it comes to detecting and quantifying selection404

strength, even though a large fraction of marine organisms do not surface and therefore cannot be studied405

with such technology.406

Finally, it is important to mention that we are detecting correlation but not necessarily causation.407

While we can confidently say whether organisms preferentially associate with certain environmental vari-408

ables thanks to this method, we cannot ascertain if they actively target these variables or variables409

correlated to them, or whether they target these conditions thanks to immediate cues or thanks to mem-410

ory and movement patterns acquired through social learning. Testing for environmental selection with411

past environmental conditions and at different temporal scales might help answer this question.412
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9 Tables569

Table 1: Fraction of animal presence location estimates with environmental data for different location
standard error σ. Each cell of this table corresponds to 72,000 data points (100 80-day tracks for 9
different values of κ).

σ 0 km 1 km 10 km 25 km 50 km 111 km
chlorophyll-a 40.7 % 67.3 % 87.7 % 96.2 % 99.6 % 100 %
SST 86.5 % 95.5 % 99.6 % 99.9 % 100 % 100 %
FTLE 100 % 100 % 100 % 100 % 100 % 100 %
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Figure 1: (A)-(C): Environmental conditions averaged over the period May 1st 2006 - July 19th 2006,
corresponding to the time period of the simulated tracks. (A) Sea Surface Temperature (SST, in ◦C), (B)
chlorophyll-a concentration (mg m−3), (C) Finite-Time Lyapunov Exponent (FTLE, in day−1). (D)-(F):
Zonal (East-West) decorrelation length scale (in km) for (D) SST, (E) chlorophyll-a concentration, and (F)
FTLE. (G)-(I): Meridional (North-South) decorrelation length scale (in km) for (G) SST, (H) chlorophyll-
a concentration, and (I) FTLE. x and y axes of all panels are longitude and latitude, respectively.
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Figure 6: Fraction of tests showing effective selection for higher values of SST (A, B, C, D), chlorophyll-a
(E, F, G, H), and FTLE (I, J, K, L) at different selection strengths (in columns), location accuracy (rows
of each panel) and sample sizes (columns of the each panel). Sample sizes are plotted as number of
data points for which environmental data is available (in both number of data points and corresponding
time span). At high location accuracy, we average the environmental variables over small areas, resulting
in many track locations with missing data points for environmental products acquired with satellites.
This lack of data is apparent in panels A-H, where grey patches correspond to missing data. We would
need to generate more than 8,000 days of tracking data to have 8,000 of tracking data with matching
environmental conditions.
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Supporting Information 1 for "The interplay between animal loca-1

tion accuracy and the decorrelation length scale of environmental2

variables when investigating environmental selection in marine or-3

ganisms"4

A Supplementary figures5
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Figure S1: Fraction of the 80-day period with data for SST (A) and chlorophyll-a concentration (B) after
8-day averaging. As FTLE is a model output, the data coverage is perfect and thus not plotted here.
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Figure S2: Synthetic tracks of animals selecting for different environmental variables (rows) and with
different selection strengths (columns). There are 100 different 80-day tracks per panel. As the case κ = 0
corresponds to no environmental selection, the same set of tracks was used for all three environmental
variables.
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Figure S4: Density distribution of SST (in ◦C) at synthetic presence (black) and pseudo-absence (grey)
points, for presence tracks not biased towards high SST (A, B, C), weakly biased towards high SST (D,
E, F), and for presence tracks moderately biased towards high SST (G, H, I). The first column (A, D, G)
corresponds to locations known with perfect accuracy, the second column (B, E, H) to locations known
with moderate accuracy (standard error of 25 km), and the third column (C, F, I) to locations known
with weak accuracy (standard error of 111 km). Note the different vertical axes of the third column.
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Figure S5: Density distribution of chlorophyll-a concentration (in mg m−3) at synthetic presence (black)
and pseudo-absence (grey) points, for presence tracks not biased towards high chlorophyll-a (A, B, C),
weakly biased towards high chlorophyll-a (D, E, F), and for presence tracks moderately biased towards
high chlorophyll-a (G, H, I). The first column (A, D, G) corresponds to locations known with perfect
accuracy, the second column (B, E, H) to locations known with moderate accuracy (standard error of 25
km), and the third column (C, F, I) to locations known with weak accuracy (standard error of 111 km).
Note the different vertical axes of the three columns.
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Figure S6: Density distribution of FTLE (in day−1) at synthetic presence (black) and pseudo-absence
(grey) points, for presence tracks not biased towards high FTLE (A, B, C), weakly biased towards high
FTLE (D, E, F), and for presence tracks moderately biased towards high FTLE (G, H, I). The first
column (A, D, G) corresponds to locations known with perfect accuracy, the second column (B, E, H)
to locations known with moderate accuracy (standard error of 25 km), and the third column (C, F, I) to
locations known with weak accuracy (standard error of 111 km). Note the different vertical axes of the
three columns.

FT
LE

 w
it
h
 g

ap
s A B C D

Te
st

 s
ta

ti
st

ic
 D

0

0.2

0.4

Number of tracks
20 40 60 80

Number of tracks
20 40 60 80

Number of tracks
20 40 60 80

Number of tracks
20 40 60 80

σ = 0 km
σ = 50 km
σ = 111 km

κ = 0 κ = 0.25 κ = 0.75 κ = 2
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estimates (shades of grey). Only test statistics from tests with p < 0.05 are included. Shaded areas
around each line indicate the bootstrapped 95% confidence intervals.
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the bootstrapped 95% confidence intervals.
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Figure S9: Box plots of the distribution of p-values of tests testing selection for higher values of SST
as a function of the number of tracks considered for different values of κ (rows) and σ (columns). The
two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower than 10−20 are plotted as 10−20.
Results shown for all null models aggregated only.
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Figure S10: Box plots of the distribution of p-values of tests testing selection for higher values of
chlorophyll-a concentration as a function of the number of tracks considered for different values of κ
(rows) and σ (columns). The two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower
than 10−20 are plotted as 10−20. Results shown for all null models aggregated only.
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Figure S11: Box plots of the distribution of p-values of tests testing selection for higher values of FTLE
as a function of the number of tracks considered for different values of κ (rows) and σ (columns). The
two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower than 10−20 are plotted as 10−20.
Results shown for all null models aggregated only.
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Figure S12: Box plots of the distribution of p-values of tests testing selection for higher values of FTLE
(with the same data gaps as chlorophyll-a) as a function of the number of tracks considered for different
values of κ (rows) and σ (columns). The two dotted red lines indicate p = 0.05 and p = 0.01, and p-values
lower than 10−20 are plotted as 10−20. Results shown for all null models aggregated only.
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Figure S13: Box plots of the distribution of p-values of tests testing selection for lower values of SST
as a function of the number of tracks considered for different values of κ (rows) and σ (columns). The
two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower than 10−20 are plotted as 10−20.
Results shown for all null models aggregated only.
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Figure S14: Box plots of the distribution of p-values of tests testing selection for lower values of
chlorophyll-a concentration as a function of the number of tracks considered for different values of κ
(rows) and σ (columns). The two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower
than 10−20 are plotted as 10−20. Results shown for all null models aggregated only.
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Figure S15: Box plots of the distribution of p-values of tests testing selection for lower values of FTLE
as a function of the number of tracks considered for different values of κ (rows) and σ (columns). The
two dotted red lines indicate p = 0.05 and p = 0.01, and p-values lower than 10−20 are plotted as 10−20.
Results shown for all null models aggregated only.
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Figure S16: Box plots of the distribution of p-values of tests testing selection for lower values of FTLE
(with the same data gaps as chlorophyll-a) as a function of the number of tracks considered for different
values of κ (rows) and σ (columns). The two dotted red lines indicate p = 0.05 and p = 0.01, and p-values
lower than 10−20 are plotted as 10−20. Results shown for all null models aggregated only.

14



σ = 0 σ = 10 σ = 50 σ = 111

κ=
2

κ=
0
.7

5
κ=

0
.2

5
κ=

0

A B C D

E F G H

I J K L

M N O P

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Number of data points Number of data points
Number of tracks

20 40 60 80
640 1280 1920 2560

Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of data points
Number of tracks

20 40 60 80
1380 2760 4140 5520

Number of data points

Figure S17: Fraction of test results showing effective selection for higher values of SST as a function of
the number of tracks considered for different values of κ (rows) and σ (columns). Shaded areas around
each line indicate the bootstrapped 95% confidence intervals. Black lines show results for all null models
aggregated, red lines results from Brownian walks only, Blue lines from Correlated random walks only,
and green lines from Joint correlated random walks only.
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Figure S18: Fraction of test results showing effective selection for higher values of chlorophyll-a concen-
tration as a function of the number of tracks considered for different values of κ (rows) and σ (columns).
Shaded areas around each line indicate the bootstrapped 95% confidence intervals. Black lines show re-
sults for all null models aggregated, red lines results from Brownian walks only, Blue lines from Correlated
random walks only, and green lines from Joint correlated random walks only.

16



κ=
2

κ=
0
.7

5
κ=

0
.2

5
κ=

0

A B C D

E F G H

I J K L

M N O P

Number of data points
Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of data points
Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of data points
Number of tracks

20 40 60 80
1600 3200 4800 6400

Number of data points

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

Fr
ac

ti
on

 o
f

 s
ig

n
if
ic

an
t 

te
st

s

0

0.4

0.8

σ = 0 σ = 10 σ = 50 σ = 111

Figure S19: Fraction of test results showing effective selection for higher values of FTLE as a function of
the number of tracks considered for different values of κ (rows) and σ (columns). Shaded areas around
each line indicate the bootstrapped 95% confidence intervals. Black lines show results for all null models
aggregated, red lines results from Brownian walks only, Blue lines from Correlated random walks only,
and green lines from Joint correlated random walks only.
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Figure S20: Fraction of test results showing effective selection for higher values of FTLE (with the
same data gaps as chlorophyll-a) as a function of the number of tracks considered for different values
of κ (rows) and σ (columns). Shaded areas around each line indicate the bootstrapped 95% confidence
intervals. Black lines show results for all null models aggregated, red lines results from Brownian walks
only, Blue lines from Correlated random walks only, and green lines from Joint correlated random walks
only.
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Figure S21: Fraction of test results showing effective selection for lower values of SST as a function of
the number of tracks considered for different values of κ (rows) and σ (columns). Shaded areas around
each line indicate the bootstrapped 95% confidence intervals. Black lines show results for all null models
aggregated, red lines results from Brownian walks only, Blue lines from Correlated random walks only,
and green lines from Joint correlated random walks only.
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Figure S22: Fraction of test results showing effective selection for lower values of chlorophyll-a concen-
tration as a function of the number of tracks considered for different values of κ (rows) and σ (columns).
Shaded areas around each line indicate the bootstrapped 95% confidence intervals. Black lines show re-
sults for all null models aggregated, red lines results from Brownian walks only, Blue lines from Correlated
random walks only, and green lines from Joint correlated random walks only.
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Figure S23: Fraction of test results showing effective selection for lower values of FTLE as a function of
the number of tracks considered for different values of κ (rows) and σ (columns). Shaded areas around
each line indicate the bootstrapped 95% confidence intervals. Black lines show results for all null models
aggregated, red lines results from Brownian walks only, Blue lines from Correlated random walks only,
and green lines from Joint correlated random walks only.
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Figure S24: Fraction of test results showing effective selection for lower values of FTLE (with the same
data gaps as chlorophyll-a) as a function of the number of tracks considered for different values of κ (rows)
and σ (columns). Shaded areas around each line indicate the bootstrapped 95% confidence intervals.
Black lines show results for all null models aggregated, red lines results from Brownian walks only, Blue
lines from Correlated random walks only, and green lines from Joint correlated random walks only.
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Figure S25: Fraction of test showing effective selection for lower values of SST (A, B, C, D), chlorophyll-a
(E, F, G, H), FTLE (I, J, K, L), and FTLE with the same data gaps as chlorophyll-a (M, N, O, P)
at different selection strengths (in columns), geolocation accuracy (rows of the panels) and sample sizes
(columns of the panels). Sample sizes are plotted as sample size with environmental data (in both number
of data points and its corresponding time span), hence the grey patches in panels A-H and M-P.
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Figure S26: Fraction of test showing effective selection for higher values of FTLE with the same data
gaps as chlorophyll-a (A, B, C, D) at different selection strengths (in columns), geolocation accuracy
(rows of the panels) and sample sizes (columns of the panels). Sample sizes are plotted as sample size
with environmental data (in both number of data points and its corresponding time span), hence the
grey patches.
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